Бериллий какая подгруппа

Бериллий Be

магний Mg

кальций Ca,

стронций Sr,

барий Ba и

радий Ra.

Хотя бериллий Be по свойствам больше похож на алюминий, а магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них.

Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.

Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.

Общая характеристка щелочноземельных металлов

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение:

  • атомного радиуса,
  • металлических, основных, восстановительных свойств,
  • реакционной способности.

Уменьшается

  • электроотрицательность,
  • энергия ионизация,
  • сродство к электрону.

Периодическая таблица-2 группа

Общая характеристика подгруппы бериллия. Неорганическая химия. Видеоурок #26

Электронные конфигурации у данных элементов схожи, все они содержат 2 электрона на внешнем уровне ns 2 :

Be — 2s 2

Mg —3s 2

Ca — 4s 2

Sr — 5s 2

Ba — 6s 2

Ra — 7s 2

Нахождение в природе щелочноземельных металлов

Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др.

Основные минералы, в которых присутствуют щелочноземельные металлы:

щелочноземельные металлы_нахождение в природе

Способы получения щелочноземельных металлов

Магний

  • Магний получают электролизом солей, чаще всего хлоридов: расплавленного карналлита (KCl·MgCl26H2O) или хлорида магния с добавками хлорида натрия при 720–750°С:
  • восстановлением прокаленного доломита в электропечах при 1200–1300°С:

2(CaO · MgO) + Si → 2Mg + Ca2SiO4

Кальций

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Читайте также:
Не суй куда попало

Барий

Барий получают алюмотермическим способом — восстановление оксида бария алюминием в вакууме при 1200 °C:

Химические свойства щелочноземельных металлов

Качественные реакции

  • Окрашивание пламени солями щелочных металлов

Цвет пламени:

щелочноземельные металлы_цвет пламени

§15, 9 кл. Берилий, магний и щелочно-земельные металлы

Sr — карминово-красный (алый)

щелочноземельные металлы_качественные реакции

Взаимодействие с простыми веществами — неметаллами

С кислородом

С кислородом взаимодействуют при нагревании с образованием оксидов

С галогенами

Щелочноземельные металлы реагируют с галогенами при нагревании с образованием галогенидов .

С водородом

Щелочноземельные металлы реагируют с водородом при нагревании с образованием гидридов:

Бериллий с водородом не взаимодействует.

Магний реагирует только при повышенном давлении:

С серой

Щелочноземельные металлы при нагревании взаимодействуют с серой с образованием сульфидов сульфидов:

Ca + 2C → CaC2 (карбиды)

С азотом

При комнатной температуре с азотом взаимодействует только магний с образованием нитрида:

Остальные щелочноземельные металлы реагируют с азотом при нагревании.

С углеродом

Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

Бериллий при нагревании с углеродом с образует карбид — метанид:

С фосфором

Щелочноземельные металлы при нагревании взаимодействуют с фосфором с образованием фосфидов:

Взаимодействие со сложными веществами

С водой

Кальций, стронций и барий взаимодействуют с водой при комнатной температуре с образованием щелочи и водорода:

Магний реагирует с водой при кипячении, а бериллий с водой не реагирует.

С кислотами

с концентрированной серной:

с разбавленной и концентрированной азотной:

С водными растворами щелочей

В водных растворах щелочей растворяется только бериллий:

С солями

В расплаве щелочноземельные металлы могут взаимодействовать с некоторыми солями:

Запомните! В растворе щелочноземельные металлы взаимодействуют с водой, а не с солями других металлов.

С оксидами

Щелочноземельные металлы могут восстанавливать из оксидов такие неметаллы как кремний, бор, углерод:

2Ca + SiO2 → 2CaO + Si

Магний сгорает в атмосфере углекислого газа с образованием оксида магния и сажи (С):

2Mg + CO2 → 2MgO + C

Рубрики

  • ОБЩАЯ ХИМИЯ
  • Основные понятия и законы химии
  • Строение атомов элементов
  • Периодический закон Д.И.Менделеева
  • Химическая связь и строение молекул
  • Основы термодинамики
  • Химическая кинетика и равновесие химической реакции
  • Растворы
  • Окислительно-восстановительные реакции
  • Электролиз
  • Коррозия металлов
  • Комплексные соединения
  • Дисперсные системы. Коллоидные растворы
  • I группа (щелочные металлы)
  • II группа (щелочноземельные металлы)
  • III группа (алюминий)
  • IV группа (углерод, кремний)
  • V группа (азот, фосфор)
  • VI группа (кислород, сера)
  • VII группа (галогены)
  • Краткая история органической химии
  • Теория строения А.М. Бутлерова
  • Классификация органических соединений
  • Изомерия и номенклатура органических соединений
  • Типы химических реакций
  • Алканы
  • Алкены, алкадиены
  • Алкины
  • Спирты
  • Простые эфиры
  • Альдегиды, кетоны
  • Карбоновые кислоты и сложные эфиры
Читайте также:
Что означает премиум

Источник: zadachi-po-khimii.ru

Бериллий, свойства атома, химические и физические свойства

Бериллий, свойства атома, химические и физические свойства.

Поделитесь информацией:

9,012182(3) 1s 2 2s 2

Бериллий — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 4. Расположен во 2-й группе (по старой классификации — главной подгруппе второй группы), втором периоде периодической системы.

Общие сведения:

100 Общие сведения
101 Название Бериллий
102 Прежнее название
103 Латинское название Beryllium
104 Английское название Beryllium
105 Символ Be
106 Атомный номер (номер в таблице) 4
107 Тип Металл
108 Группа Амфотерный, щёлочноземельный, редкий, лёгкий, цветной металл
109 Открыт Луи-Николя Воклен, Франция, 1798 г.
110 Год открытия 1798 г.
111 Внешний вид и пр. Относительно твёрдый, хрупкий металл светло-серого цвета
112 Происхождение Природный материал
113 Модификации
114 Аллотропные модификации 2 аллотропные модификации бериллия:

— α-бериллий с гексагональной плотноупакованной кристаллической решёткой,

Свойства атома бериллия :

200 Свойства атома
201 Атомная масса (молярная масса) 9,012182(3) а.е.м. (г/моль)
202 Электронная конфигурация 1s 2 2s 2
203 Электронная оболочка K2 L2 M0 N0 O0 P0 Q0 R0

Химические свойства бериллия:

300 Химические свойства
301 Степени окисления 0, +1, +2
302 Валентность I, II
303 Электроотрицательность 1,57 (шкала Полинга)
304 Энергия ионизации (первый электрон) 899,5 кДж/моль (9,322699(7) эВ)
305 Электродный потенциал Be 2+ + 2e — → Be, E o = -1,847 В
306 Энергия сродства атома к электрону -48(20) кДж/моль (-0,5(2) эВ) – предположительно

Физические свойства бериллия:

400 Физические свойства
401 Плотность* 1,85 г/см 3 (при 20 °C и иных стандартных условиях, состояние вещества – кристаллы, твердое тело),

10 Па (при 1608 K),

100 Па (при 1791 K),

1 кПа (при 2023 K),

Читайте также:
Что тяжелее золото или серебро в граммах

10 кПа (при 2327 K),

Кристаллическая решётка бериллия:

500 Кристаллическая решётка
511 Кристаллическая решётка #1 α-бериллий
512 Структура решётки Гексагональная плотноупакованная

Дополнительные сведения:

900 Дополнительные сведения
901 Номер CAS 7440-41-7

Примечание:

206* Ковалентный радиус бериллия согласно [1] и [3] составляет 96±3 пм и 90 пм соответственно.

401* Плотность бериллия согласно [3] составляет 1,848 г/см 3 (при 0 °C и иных стандартных условиях, состояние вещества – твердое тело).

402* Температура плавления бериллия согласно [3] составляет 1278 °C (1551 K, 2332 °F).

403* Температура кипения бериллия согласно [3] составляет 2970 °C (3243 K, 5378 °F).

407* Удельная теплота плавления (энтальпия плавления ΔHпл) бериллия согласно [3] и [4] составляет 12,21 кДж/моль и 14,7 кДж/моль соответственно.

408* Удельная теплота испарения (энтальпия кипения ΔHкип) бериллия согласно [3] составляет 309 кДж/моль.

410* Молярная теплоемкость бериллия согласно [3] составляет 16,44 Дж/(K·моль).

  1. https://en.wikipedia.org/wiki/Beryllium
  2. https://de.wikipedia.org/wiki/Beryllium
  3. https://ru.wikipedia.org/wiki/Бериллий
  4. http://chemister.ru/Database/properties.php?dbid=1https://chemicalstudy.ru/berilliy-svoystva-atoma-himicheskie-i-fizicheskie-svoystva/» target=»_blank»]chemicalstudy.ru[/mask_link]

    55. Общая характеристика подгруппы бериллия

    К подгруппе бериллия относятся: бериллий и щелочноземельные металлы: магний, стронций, барий, кальций и радий . Наиболее распространены в природе в виде соединений, причем в основном магния и кальция. Первые два элемента подгруппы занимают в ней несколько обособленное положение – бериллий по свойствам близок к алюминию, а магний – к цинку. Последний элемент подгруппы – радий – имеет радиоактивные изотопы. Кроме бериллия, все элементы подгруппы обладают металлическими свойствами, более твердые по сравнению с щелочными металлами, с высокими температурами плавления. Относятся к легким металлам (кроме радия).

    На электронном уровне элементов имеют два электрона (s2), которые они отдают, образуя соединения со степенью окисления +2. По химической активности щелочноземельные металлы уступают щелочным. Они окисляются на воздухе, вытесняют водород из воды, но бериллий и магний взаимодействуют с ней медленно.

    У щелочноземельных элементов растворимость гидроксидов увеличивается от магния к барию. Сжигая щелочноземельные металлы, можно получить оксиды. Перекиси щелочноземельных металлов менее стойки, чем перекиси щелочных металлов. С водородом образуют гидриды. Способность взаимодействовать с азотом возрастает с увеличением атомного веса, в результате образуются нитриды.

    Соли щелочноземельных металлов малорастворимы в воде.

    Бериллий – открыт Л. Н. Вокленом в 1798 г . Содержание в земной коре составляет 3,8 ·10-4%. Используется для изготовления окон к рентгеновским установкам, добавляется к сплавам для увеличения твердости и электропроводности.

    Магний – открыт Г. Дэви в 1808 г. Содержание в земной коре составляет 1,87 %. Используется для получения сплавов (дюралюминия), улучшения качества чугуна, в качестве восстановителя для получения редких металлов и некоторых неметаллов.

    Кальций – открыт Г. Дэви в 1808 г. Содержание в земной коре составляет 3,3 %. Используется в металлургии для очистки, в производстве редких металлов.

    Стронций – получен Г. Дэви в 1808 г. Содержание в земной коре составляет 0,034 %. Соединения используются в пиротехнике, сахарной промышленности.

    Барий – открыт К. В. Шееле в 1774 г. и Г. Дэви в 1808 г. Содержание в земной коре составляет 0,065 %. Соединения используются в лабораторной практике, для получения пероксида водорода, пиротехнике.

    Радий открыт М. и П. Кюри совместно с Ж. Белебном в 1898 г. Содержание в земной коре составляет 10–10%. Обладает естественной радиоактивностью. Соединения используются в исследованиях и для получения радона.

    56. Кальций

    Кальций (Са) – химический элемент 2-й группы периодической системы, является щелочноземельным элементом. Природный кальций состоит из шести стабильных изотопов. Конфигурация внешней электронной оболочки 4s2; имеет степень окисления +2, реже +1. Содержание в земной коре составляет 3,38 %. Встречается исключительно в виде соединений, в основном солей кислородсодержащих кислот.

    Большое количество кальция находится в природных водах. Значительное количество кальция содержится в организмах многих животных.

    Общие свойства. Кальций – серебристо-белый металл. Существует в двух аллотропных модификациях. На воздухе, имеющем пары воды, кальций быстро образует оксид СаО и гидроксид Са (ОН)2 . Вступает в реакцию с кислородом, образуя СаО; при повышении температуры в кислороде и на воздухе воспламеняется.

    Из воды вытесняет водород Н2 , при этом образуется Са(ОН)2 , в холодной воде скорость реакции уменьшается. Взаимодействует с галогенами, образуя СаХ2. СН 2 при нагревании кальция дает гидрид СаН2 , в котором водород является анионом.

    Кальций, нагреваемый в атмосфере азота, загорается и образует нитрид Ca3N2 . С углеродом образует кальция карбид СаС2 , с бором – борид СаВ6 . Образует соединения с металлами (Ag, Au, Al, Cu, Mg, Rb), вытесняет их из расплавов солей. Кальций растворим в жидком аммиаке NH3 с образованием синего раствора. Соли получают при взаимодействии кислотных оксидов с оксидом кальция. Они хорошо растворимы, способны образовывать кристаллогидраты.

    В водных растворах образуются комплексы преимущественно с кислотосодержащими лигандами, имеющие в своем составе ион Са2+. На основе этих комплексов основано действие умягчителей воды – полифосфатов натрия. Ион Са2+в неводных растворах образует комплексы с молекулами растворителя.

    Получение. Промышленное получение кальция состоит в алюмотермическом восстановлении оксида кальция и электролизе расплава хлорида кальция (75–85 %) и хлорида калия. Безводный хлорид кальция получают путем хлорирования его оксида в присутствии угля или обезвоживая кристаллогидрат хлорида кальция. По мере выделения кальция в расплаве в него добавляют хлорид кальция. Электролиз проводят, используя графитовый анод и в качестве катода – жидкий расплав кальция (62–65 %) и меди.

    Применение . Кальций используют при ме-таллотермическом получении U, Th, Ti, Z r, Cs, Rb и некоторых лантаноидов, для удаления примесей кислорода, азота, серы, фосфора из сплавов, обезвоживания органических жидкостей, очистки Аr от примеси N2. Используются и соединения кальция, например, в качестве вяжущих материалов.

    Источник: studfile.net

Рейтинг
Загрузка ...