Самые прочные металлы в мире: топ-10
Можете ли вы представить, что произошло, если бы наши предки не обнаружили важные металлы, такие как серебро, золото, медь и железо? Наверное, мы бы до сих пор жили в хижинах, используя камень в качестве основного инструмента. Именно крепость металла сыграла важную роль в формировании нашего прошлого и теперь работают как основа, на которой мы строим будущее.
Некоторые из них очень мягкие и буквально тают в руках, как самый активный металл в мире. Другие — настолько твердые, что их невозможно согнуть, поцарапать или сломать без применения спецсредств.
А если вам интересно, какие металлы самые твердые и прочные в мире, мы ответим на этот вопрос, учитывая различные оценки относительной твердости материалов (шкала Мооса, метод Бринелля), а также такие параметры как:
- Модуль Юнга: учитывает эластичность элемента при растяжении, то есть способность объекта к сопротивлению при упругой деформации.
- Предел текучести: определяет максимальный предел прочности материала, после которого он начинает проявлять пластичное поведение.
- Предел прочности при растяжении: предельное механическое напряжение, после которого материал начинает разрушаться.
10. Тантал
ГИДРАВЛИЧЕСКИЙ ПРЕСС ПРОТИВ САМОГО ТВЕРДОГО МЕТАЛЛА И МИНЕРАЛОВ
У этого металла сразу три достоинства: он прочный, плотный и очень устойчив к коррозии. Кроме того, этот элемент относится к группе тугоплавких металлов, таких как вольфрам. Чтобы расплавить тантал вам придется развести огонь температурой 3 017 °C.
Тантал в основном используется в секторе электроники для производства долговечных, сверхмощных конденсаторов для телефонов, домашних компьютеров, камер и даже для электронных устройств в автомобилях.
9. Бериллий
А вот к этому металлическому красавцу лучше не приближаться без средств защиты. Потому что бериллий высокотоксичен, и обладает канцерогенным и аллергическим действием. Если вдыхать воздух, содержащий пыль или пары бериллия, то возникнет заболевание бериллиоз, поражающее легкие.
Однако бериллий несет не только вред, но и благо. Например, добавьте всего 0,5 % бериллия в сталь и получите пружины, которые будут упругими даже если довести их до температуры красного каления. Они выдерживают миллиарды циклов нагрузки.
Бериллий применяют в аэрокосмической промышленности для создания тепловых экранов и систем наведения, для создания огнеупорных материалов. И даже вакуумная труба Большого Адронного Коллайдера сделана из бериллия.
8. Уран
Это естественное радиоактивное вещество очень широко распространено в земной коре, но сконцентрировано в определенных твердых скальных образованиях.
Один из самых твердых металлов в мире имеет два коммерчески значимых применения — ядерное оружие и ядерные реакторы. Таким образом, конечной продукцией урановой промышленности являются бомбы и радиоактивные отходы.
7. Железо и сталь
Как чистое вещество железо не такое твердое по сравнению с другими участниками рейтинга. Но из-за минимальных затрат на добычу оно часто комбинируется с другими элементами для производства стали.
Сталь — это очень прочный сплав из железа и других элементов, таких как углерод. Это наиболее часто используемый материал в строительстве, машиностроении и других отраслях промышленности. И даже если вы не имеете к ним никакого отношения, то все равно используете сталь каждый раз, когда режете продукты ножом (если он, конечно, не керамический).
6. Титан
Титан — это практически синоним прочности. Он обладает впечатляющей удельной прочностью (30-35 км), что почти вдвое выше, чем аналогичная характеристика легированных сталей.
Будучи тугоплавким металлом, титан обладает высокой устойчивостью к нагреву и истиранию, поэтому является одним из самых популярным сплавов. Например, он может быть легирован железом и углеродом.
Если вам нужна очень твердая и при этом очень легкая конструкция, то лучше чем титан металла не найти. Это делает его выбором номер один для создания различных деталей в авиа- и ракетостроении и судостроении.
5. Рений
Это очень редкий и дорогой металл, который хотя и встречается в природе в чистом виде, обычно идет «довеском»-примесью к молибдениту.
Если бы костюм Железного человека был сделан из рения, он мог бы выдержать температуру в 2000 ° C без потери прочности. О том, что стало бы с самим Железным человеком внутри костюма после такого «фаер-шоу» мы умолчим.
Россия — третья страна в мире по природным запасам рения. Этот металл используется в нефтехимической промышленности, электронике и электротехнике, а также для создания двигателей самолетов и ракет.
4. Хром
По шкале Мооса, которая измеряет устойчивость химических элементов к царапинам, хром находится в пятерке лучших, уступая лишь бору, алмазу и вольфраму.
Хром ценится за высокую коррозионную стойкость и твердость. С ним легче обращаться, чем с металлами платиновой группы, к тому же он более распространен, поэтому хром является популярным элементом, используемым в сплавах, таких, как нержавеющая сталь.
А еще один из прочнейших металлов на Земле используется при создании диетических добавок. Конечно, вы будете принимать внутрь не чистый хром, а его пищевое соединение с другими веществами (например, пиколинат хрома).
3. Иридий
Как и его «собрат» осмий, иридий относится к металлам платиновой группы, и по внешнему виду напоминает платину. Он очень твердый и тугоплавкий. Чтобы расплавить иридий, вам придется развести костер температурой выше 2000 °C.
Иридий считается одним из самых тяжелых металлов на Земле, а также одним из самых устойчивых к коррозии элементов.
2. Осмий
Этот «крепкий орешек» в мире металлов относится к платиновой группе и обладает высокой плотностью. Фактически это самый плотный природный элемент на Земле (22,61 г/см3). По этой же причине осмий не плавится до 3033 ° C.
Когда он легирован другими металлами платиновой группы (такими как иридий, платина и палладий), он может использоваться во многих различных областях, где необходимы твердость и долговечность. Например, для создания емкостей для хранения ядерных отходов.
1. Вольфрам
Самый прочный металл, который только есть в природе. Этот редкий химический элемент также самый тугоплавкий из металлов (3422 ° C).
Впервые он был обнаружен в форме кислоты (триоксида вольфрама) в 1781 году шведским химиком Карлом Шееле. Дальнейшие исследования привели двух испанских ученых — Хуана Хосе и Фаусто д’Эльхуяра — к открытию кислоты из минерала вольфрамита, из которого они впоследствии изолировали вольфрам с помощью древесного угля.
Помимо широкого применения в лампах накаливания, способность вольфрама работать в условиях сильной жары делает его одним из наиболее привлекательных элементов для оружейной промышленности. Во время Второй мировой войны этот металл сыграл важную роль в инициировании экономических и политических отношений между европейскими странами.
Вольфрам также используется для изготовления твердых сплавов, а в аэрокосмической промышленности — для изготовления ракетных сопел.
Таблица предела прочности металлов
Металл | Обозначение | Предел прочности, МПа |
---|---|---|
Свинец | Pb | 18 |
Олово | Sn | 20 |
Кадмий | Cd | 62 |
Алюминий | Al | 80 |
Бериллий | Be | 140 |
Магний | Mg | 170 |
Медь | Cu | 220 |
Кобальт | Co | 240 |
Железо | Fe | 250 |
Ниобий | Nb | 340 |
Никель | Ni | 400 |
Титан | Ti | 600 |
Молибден | Mo | 700 |
Цирконий | Zr | 950 |
Вольфрам | W | 1200 |
Сплавы против металлов
Сплавы представляют собой комбинации металлов, и основной причиной их создания является получение более прочного материала. Наиболее важным сплавом является сталь, которая представляет собой комбинацию железа и углерода.
Чем выше прочность сплава — тем лучше. И обычная сталь тут не является «чемпионом». Особенно перспективными представляются металлургам сплавы на основе ванадиевой стали: несколько компаний выпускают варианты с пределом прочности до 5205 МПа.
А самым прочным и твердым из биосовместимых материалов на данный момент является сплав титана с золотом β-Ti3Au.
ИсточникЧто прочнее?
То, что алмаз это одно из самых твёрдых веществ совершенно не означает, что он прочный. Алмаз СЛИШКОМ твёрдый. Он не способен поглотить (распределить) сильный скачок внутренней энергии, и от того легко бъётся, например, как написал Урднот Рекс, молотком.
Скажем так, тут играют обстоятельства, при которых спрашивается про прочность.
ArkisH122
ЛОЛ Причём здесь температура плавления?
Дам пример — стекло. У алмаза схожая со стеклом структура. Оно (стекло) плавится при температуре 300 + градусов, но это если процесс нагрева постепенный. Если же резко нагреть его, оно лопнет, не дойдя до жидкого состояния.
Далее: температура вещества это его внутренняя энергия, та самая, которая появляется при ударе.
Вывод: стекло не лопнет, если на него медленно опускать большой груз и распределять его — оно удержит его (но всё таки есть предел), и в тоже время его можно разбить ударом руки. Тут как раз таки и играет свою роль скорость распределения внутренней энергии.
- пожаловаться
Алмаз тверже, титан прочнее. Титановый брусок можно целый месяц пилить напильником, и получить один маленький кусочек.
ИсточникТверже алмаза: топ 5 самых твердых веществ в мире
Многие ошибочно полагают, что на Земле нет ничего тверже алмаза. Но есть соединения, по сравнению с которыми алмаз напоминает мягкое масло! Некоторые из них встречаются в природе, другие же могут быть синтезированы исключительно в лабораторных условиях. Итак, 5 самых твердых веществ в мире:
1. Фуллерит
Это вещество по праву считается самым твердым на Земле. Уникальность этого кристалла в том, что состоит он не из атомов, а из молекул. Удивительно, но фуллерит царапает алмаз точно так же, как металлический нож оставляет следы на пластиковой поверхности.
В природе фуллерит не встречается: он может быть синтезирован только искусственным путем. Получают его из фуллеренов под давлением в 90 тысяч атмосфер и при температуре около 300 градусов. Фуллерены представляют собой молекулярные «шары», состоящие из атомов углерода.
Если рассматривать их под мощным микроскопом, «шары» будут напоминать футбольные мячи, каждая «грань» которых составлена из шести молекул углерода. Под воздействие экстремальных условий эти «шары» соединяются друг с другом, образуя прочные, практически нерушимые химические связи. Интересно, что существуют особые катализаторы, благодаря которым реакция полимеризации может происходить даже при комнатной температуре.
Свойста фуллерита:
Во-первых, как уже было сказано, он практически в два раза тверже, чем алмаз. Во-вторых, он обладает исключительной устойчивостью к концентрированным кислотам и щелочам, практически не вступая в химические реакции даже с самыми агрессивными реагентами.
В-третьих, фуллерит устойчив к воздействию высоких температур. Своих свойств он не теряет вплоть до температуры 930 градусов Цельсия! Наконец, между молекулами углерода в его атомарной решетке имеются пустоты, которые могут быть заполнены любыми другими молекулами, в том числе и металлами, что позволяет создать на основе фуллерита материалы с любыми заданными свойствами.
2. Лонсдейлит
Этот минерал очень похож на алмаз по своей молекулярной структуре. Его даже называют гексональным алмазом. Лонсдейлит также является одной из модификаций углерода.
Однако если это вещество загрязнено различными примесями, оно не может похвастаться особой твердостью. Но в очищенном виде он гораздо тверже, чем алмаз, и с легкостью может оставить на нем царапины. Чистый лонсдейлит на 58% прочнее алмаза, а при приложении к нему нагрузки прочность его лишь увеличивается. Кстати, механизм этого процесса для ученых все еще остается загадкой.
Очень интересна история его открытия. Впервые следы вещества удалось обнаружить на дне воронок, оставшихся после падения метеоритов. Метеориты эти, по-видимому, состояли преимущественно из графита. Из-за высокой температуры графит превратился в лонсдейлит. Минерал был найден в России на месте падения Тунгусского метеорита, а также в Америке в кратере Дьявола.
Благодаря этому Лонсдейлит еще называют космическим алмазом.
Свое название минерал получил в честь ученого-минералога из Британии Кэтлин Лонсдейл. Идею дать ему именно такое название предложил другой минералог по имени Клиффорд Фрондель. Он пояснил эту мысль тем, что новая форма алмаза в природе столь же редка, как и женщина-ученый. Конечно, в наши дни это не столь актуально. В 1960-е же годы ситуация в науке была такой, что женщинам было сложно добиться больших научных высот.
3. Вюртцитный нитрид бора
Кристаллическая решетка этого вещества представляет собой особую форму, которую называют вюртцитной. Именно благодаря этому вещество является столь твердым. Если прикладывать к кристаллу нагрузку, атомы в кристаллической решетке будут особым образом перераспределяться, из-за чего вещество станет еще более твердым.
То есть чем больше нагрузка, тем тверже делается нитрид бора! Это свойство роднит его с лонсдейлитом — еще одним «конкурентом» алмаза, который образуется на дне воронок, оставленных графитовыми метеоритами. До сих пор не удалось точно установить, по каким причинам твердость минерала меняется при воздействии нагрузок.
К сожалению, вопрос остается открытым, так как экспериментировать с этим веществом довольно сложно, поскольку его нелегко синтезировать в лабораторных условиях.
4. Эльбор
Эльбор иначе называют кингсонгит и боразон. Материал этот практически такой же твердый, как и алмаз. Благодаря этому он широко используется в обработке различных твердых сплавов. Эльбор является природной модификацией нитрида бора.
Эльбор — единственное соединение бора, которой образуется в недрах нашей планеты. Остальные минералы, в состав которых входит бор, зарождаются около поверхности Земли.
Эльбор удалось обнаружить в части земной коры, которая в ходе эволюции планеты словно бы «нырнула» под соседнюю литосферную плиту. На глубине более трех сотен километров при температуре около 1200 градусов произошли химические превращения, в результате которых и появился этот сверхтвердый минерал. Случилось это примерно 180 миллионов лет назад.
5. Нитрил бора
Это вещество появилось сравнительно недавно: оно было синтезировано в лабораторных условиях в 1957 году, и оказалось значительно тверже алмаза. Одновременно оно превосходит его и по ряду других свойств. Например, при воздействии сверхвысоких температур вещество не растворяется в металлах, благодаря чему может использоваться для обработки стали. Слой нитрила углерода-бора наносится на инструмент в качестве режущей кромки для обработки всевозможных деталей, использующихся в самолетах и космических кораблях.
Природа удивительна и нас ждет еще множество невероятных открытий. Алмаз — далеко не самое твердое в мире вещество. Правда, поспорить с ним по красоте и привлекательности другим минералам непросто. Хотя нельзя исключать, что рано или поздно в продаже появятся обручальные кольца с фуллеритом или лонсдейлитом.
Источник