Диэлектрическая проницаемость серебра значение

В этой статье мы расскажем о самых важных вещах, связанных с диэлектрической проницаемостью. Среди прочего, вы узнаете о важных ролях, которые она играет, и о её типичных значениях.

Простое объяснение

В повседневной жизни вы сталкиваетесь с различными веществами, такими как металлы, вода или кислород. Каждое из этих веществ по-разному реагирует на электрические поля.

Диэлектрическая проницаемость (диэлектрическая постоянная или абсолютная диэлектрическая проницаемость) ε описывает способность материала к поляризации электрическими полями и определяется следующим образом: ε = εr * ε0 .

Здесь εr — относительная проницаемость, а ε0 — электрическая постоянная (или диэлектрическая проницаемость вакуума).

Если понимать значение термина «проницаемость» буквально, то это мера того, насколько сильно материя «пропускает» электрическое поле. Поэтому проницаемость можно рассматривать как меру того, насколько материя может быть поляризована.

Диэлектрическая проницаемость вакуума

Особую роль играет диэлектрическая проницаемость вакуума (также называемая проницаемостью вакуума). В этом разделе мы расскажем вам о значении и единицах измерения проницаемости вакуума, о том, как она связана с другими константами, и о ее значении в контексте других важных законов.

Комплексная диэлектрическая проницаемость льда | 1 курс

Числовое значение и единица измерения

Диэлектрическая проницаемость вакуума ε0 имеет значение 8,85418781762039 * 10 -12 или 8.85 * 10 -12 , что более практично для расчетов. Единицей измерения константы является [ Ф·м −1 ] или если выражать через основные единицы СИ [ м −3 ·кг −1 ·с 4 ·А 2 ].

Взаимосвязь с другими константами

Существует замечательная связь между электрической постоянно ε0, магнитной постоянно μ‎0 и скоростью света в вакууме с0. То есть верно следующее соотношение: c0 2 = 1 / ε0 * μ‎0 .

До 2019 года это уравнение точно определяло значение постоянной электрического поля. Однако в ходе пересмотра ситуация изменилась, и с 20 мая 2019 года как электрическая постоянная, так и магнитная постоянная имеют определенную погрешность измерения.

Это уравнение было первым указанием на то, что свет может быть электромагнитной волной.

Закон Кулона и электрический потенциал

Помимо связи со скоростью света, электрическая постоянная фигурирует в других важных законах электродинамики. К ним относятся, например:

Закон Кулона

  • Закон Кулона:
  • Электрический потенциал заряженной частицы : φ ( r ) = q / 4 * π * ε0 * r .

В частности, закон Кулона является основой электростатики, поэтому константа электрического поля также имеет большое значение.

Читайте также:
Серебряный паук что за вид

Диэлектрическая проницаемость: общий случай

В этом разделе мы рассмотрим общий случай. Мы объясним физический смысл абсолютной диэлектрической проницаемости с помощью электроизоляционных материалов и объясним, что такое относительная диэлектрическая проницаемость.

10 Диэлектрическая проницаемость

Диэлектрическая проницаемость диэлектриков

В электроизолирующих материалах (диэлектриках) электрические заряды связаны с атомами или молекулами. Поэтому они могут лишь немного перемещаться внутри атомов или молекул. Электрическое поле может изменить распределение заряда в диэлектрике двумя важными способами: деформацией и вращением. Даже если отдельные электрические заряды могут двигаться незначительно, совокупность всех движений определяет поведение электроизоляционного материала.

Поляризация

В зависимости от того, состоит ли материал из полярных или неполярных молекул, реакция на внешнее электрическое поле различна. С неполярной молекулой происходит растягивание (деформация), при котором поле индуцирует дипольный момент в каждой молекуле материала. Все эти дипольные моменты направлены в ту же сторону, что и электрическое поле.

В полярной молекуле, с другой стороны, происходит вращение, так что и здесь все дипольные моменты направлены в сторону электрического поля. В целом внешнее электрическое поле вызывает образование в материале большого количества диполей, все из которых ориентированы в том же направлении, что и внешнее поле. Таким образом, материал поляризуется. Поляризация P описывает, сколько дипольных моментов приходится на единицу объема материала.

Поляризация за счет деформации и вращения

Таким образом, поляризация диэлектрика вызывается электрическим полем. Возникающие направленные дипольные моменты, в свою очередь, создают электрическое поле, противодействующее внешнему полю. Таким образом, это противоположное поле ослабляет внешнее поле. В целом, связь между поляризацией и внешним электрическим полем сложная. Для многих веществ, так называемых линейных диэлектриков, поляризация пропорциональна полю. Применяется следующее соотношение:

P = ε0 * χ * E , где

Здесь ε0 — электрическая постоянная, а χ — электрическая поляризуемость. Электрическое поле E в этом уравнении является полным полем. Поэтому причиной этого могут быть частично свободные заряды и частично сама поляризация.. Свободные заряды — это все те носители заряда, которые не являются результатом поляризации. Таким образом, это полное электрическое поле очень трудно рассчитать, поскольку мы обычно не имеем информации о распределении поляризационных зарядов.

Для справки: χ — коэффициент, зависящий от химического состава, концентрации, структуры (в том числе от агрегатного состояния) среды, температуры, механических напряжений и т. д. (от одних факторов более сильно, от других слабее, конечно же и в зависимости от диапазона изменений каждого), и называемый (электрической) поляризуемостью (а чаще, по крайней мере для того случая, когда он выражается скаляром — диэлектрической восприимчивостью) данной среды.

Википедия

Электрическая индукция

Чтобы иметь возможность рассчитать электрическое поле даже в присутствии диэлектрика, вводится электрическая индукция D. В линейной среде: D = ε0 * E + P = ε0 * E + ε0 * χe * E = ε0 * ( 1 + χe ) * E и поэтому D также пропорциональна E .

Читайте также:
Почему юноши держат щит на котором изображена в червленом поле выходящая из серебряных облаков

Если вы объедините константы вместе ε = ε0 * ( 1 + χe ), то получится: D = ε * E .

Постоянная ε и называется диэлектрической проницаемостью.

Относительная диэлектрическая проницаемость

Величина: εr = 1 + χe = ε / ε0 называется относительной проницаемостью (также относительной диэлектрической проницаемостью). С его помощью полное электрическое поле в присутствии диэлектрика определяется следующим образом: E = D / ε = D / εr * ε0 .

При постоянной электрической индукции относительная проницаемость, таким образом, определяет, насколько сильно ослабляется электрическое поле. Чем больше относительная проницаемость, тем больше ослабляется электрическое поле и, следовательно, уменьшается общая напряженность электрического поля.

Термин относительная проницаемость может привести к неправильному пониманию того, что относительная проницаемость для данного материала является константой. На самом деле, относительная проницаемость зависит от многих факторов. Среди них:

  • температура материала;
  • частота внешнего электрического поля;
  • напряженность внешнего электрического поля.

Для некоторых материалов относительная проницаемость дополнительно зависит от направления. Следовательно, в случае таких материалов это не просто число, а часто тензор второго порядка.

Особенно наглядную иллюстрацию влияния диэлектриков с разной относительной проницаемостью можно получить, поместив диэлектрик между двумя пластинами конденсатора. Если измерить электрическое напряжение на конденсаторе до и после введения диэлектрика, то можно обнаружить, что напряжение на конденсаторе уменьшается ровно на величину εr относительной диэлектрической проницаемости. Это следует непосредственно из уравнения: E = U / d для величины электрического поля между пластинами конденсатора, расположенными на расстоянии d друг от друга. Это также иллюстрирует, почему εr называется относительной проницаемостью. Напряжение на конденсаторе уменьшается на коэффициент εr за счет введения диэлектрика, по сравнению со случаем, когда между пластинами только вакуум.

Относительные диэлектрические проницаемости отдельных материалов

Наконец, мы приводим таблицу с типичными значениями относительной диэлектрической проницаемости (относительной диэлектрической проницаемости) различных материалов. Следует отметить, что в таких таблицах обычно указывается относительная проницаемость, а не сама абсолютная диэлектрическая проницаемость. Поэтому, если вы ищете таблицу для определения абсолютной диэлектрической проницаемости определенного материала, вы должны помнить, что приведенное там значение не является непосредственно той проницаемостью, которую вы ищете. Однако для заданного значения относительной проницаемости можно вычислить соответствующую абсолютную диэлектрическую проницаемость без особых дополнительных усилий. То есть нужно применять следующую уже известную нам формулу: ε = εr * ε0 .

Вещество εr
Вакуум ровно 1
Гелий 1,000065
Медь 5,6
Воздух (сухой) 1,00059
Метанол 32,6
Бумага 1 – 4
Вода ( 20°C, 0 — 3 ГГц ) 80
Вода ( 0°C, 0 — 1 ГГц ) 88

Таблица 1. Относительная диэлектрическая проницаемость выбранных веществ
(если не указано иное: при 18°C и 50 Гц)

В предыдущем разделе мы упоминали, что относительная проницаемость зависит, помимо прочего, от температуры и частоты. Поэтому важно знать и температуру, и частоту, если вы хотите получить значение из таблицы. Например, относительная проницаемость воды при температуре 20°C и частоте 0 ГГц равна 80. Если температура 0°C, а частота та же, относительная проницаемость воды равна 88.

Читайте также:
Сколько серий серебряный волк

Медь, с другой стороны, имеет относительную проницаемость 5,6. Это означает, что вода как среда уменьшит напряжение на конденсаторе в 80 раз, в то время как медь уменьшит его только в 5,6 раз.

Список использованной литературы

  1. Курс физики для ФМШ при НГУ, раздел «Электромагнитное поле», гл. 2: «Диэлектрики».
  2. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. — М.: Мир, 1965.
  3. Сивухин Д. В. Общий курс физики. — М.. — Т. III. Электричество.
  4. Гольдштейн Л. Д., Зернов Н. В. Электромагнитные поля и волны. М.: Сов. радио, 1971. С. 11.

Источник: www.asutpp.ru

Диэлектрическая проницаемость различных веществ, в т.ч. основных диэлектриков.

Диэлектрическая проницаемость различных веществ, в т.ч. основных диэлектриков.

Диэлектрик
ε
примечание
Поиск в инженерном справочнике DPVA. Введите свой запрос:

Дополнительная информация от Инженерного cправочника DPVA, а именно — другие подразделы данного раздела:

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Консультации и техническая
поддержка сайта: Zavarka Team

Источник: dpva.ru

Относительная диэлектрическая проницаемость

Относительная диэлектрическая проницаемость среды εотн – безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды).

Она показывает, во сколько раз растворимость уменьшает силу электростатического взаимодействия между растворенными частицами по сравнению с их взаимодействием в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности).

Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока – около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Таблица — Относительная диэлектрическая проницаемость материалов Материал Условия измерения Диэлектрическая проницаемость
Пластмассы
Винипласт 50 Гц, 20 °С 3,6–4,0
10 6 Гц, 20 °С 4,1
Гетинакс 50 Гц, 20 °С 6–8
10 6 Гц, 20 °С 6–7
Капролон 10 6 Гц, 20 °С 3,4–4,1
Капрон 10 6 Гц, 20 °С 3,6–4,0
Карболит 50 Гц, 20 °С 6
Лавсан (пленочный) 50 Гц, 20 °С 3,0–3,6
Нейлон 3,2
Полиамид-6.10 10 6 Гц, 20 °С 3,4–4,0
Поливинилацеталь 10 6 Гц, 20 °С 2,7
Поливинилбутераль 10 6 Гц, 20 °С 3,0–3,9
Поливинилиденхлорид 10 6 Гц, 20 °С 3,0–5,0
Поливинилхлорид жесткий 10 6 Гц, 20 °С 2,8–3,4
Поливинилхлорид пластифицированный 10 6 Гц, 20 °С 3,3–4,5
Полигексаметиленадипинамид 10 6 Гц, 20 °С 3,6–4,0
Полигексаметиленсебацинамид 10 6 Гц, 20 °С 3,4–4,0
Поликапролактам (капролон) 10 6 Гц, 20 °С 3,4–4,1
Поликапролактам (капрон) 10 6 Гц, 20 °С 3,6–4,0
Поликарбонаты 10 6 Гц, 20 °С 3,0
Полиметилметакрилат 10 6 Гц, 20 °С 2,9–3,2
Полипропилен 10 6 Гц, 20 °С 2,0
Полистирол 20 °С 2,2–2,8
Полистирол блочный 10 6 Гц, 20 °С 2,6
Полистирол ударопрочный 10 6 Гц, 20 °С 2,7
Полиуретан 50 Гц, 20 °С 4,0–5,0
Полифенилформаль 10 6 Гц, 20 °С 4,8
Полихлорвинил 20 °С 3,1–3,5
Полиэтилен 10 6 Гц, 20 °С 2,25
Полиэтилен высокого давления 50 Гц, 20 °С 2,1–2,3
Полиэтилен низкого давления 50 Гц, 20 °С 2,2–2,4
Текстолит 50 Гц, 20 °С 5–7
10 6 Гц, 20 °С 6–8
Тефлон (Фторопласт-4) 2,1
Фторопласт-3 20 °С 2,5–2,7
Фторопласт-4 50 Гц 1,9–2,2
Эбонит 50 Гц, 20 °С 3,2
Эскапон 20 °С 2,7–3
Резины
Гуттаперча 20 °С 4
Каучук 2,4
Резина мягкая 20 °С 2,6–3
Эбонит 20 °С 4–4,5
Жидкости
Аммиак 20 °С 17
0 °С 20
-40 °С 22
-80 °С 26
Анилин 18 °С 7,3
Ацетон 0 °С 23,3
10 °С 22,5
20 °С 21,4
25 °С 20,9
30 °С 20,5
40 °С 19,5
50 °С 18,7
Бензол 0 °С
10 °С 2,30
20 °С 2,29
25 °С 2,27
30 °С 2,26
40 °С 2,25
50 °С 2,22
Бром 5 °С 3,1
Вода 0 °С 87,83
10 °С 83,86
20 °С 80,08
25 °С 78,25
30 °С 76,47
40 °С 73,02
50 °С 69,73
Глицерин 0 °С 41,2
20 °С 47
Керосин 20 °С 2,0
21 °С 2,1
Кислота плавиковая 0 °С 83,6
Кислота серная 20–25 °С 84–100
Кислота синильная 0–21 °С 158
Компаунд эпоксидный заливочный 50 Гц 4,5
10 6 Гц 3,9
Компаунд эпоксидный пропиточный 50 Гц 4,2
10 6 Гц 3,9
Ксилол 18 °С 2,4
Масло касторовое 10,9 °С 4,6
Масло оливковое 21 °С 3,2
Масло парафиновое 20 °С 4,7
Масло трансформаторное 18 °С 2,2–2,5
Метанол 30
Нефть 21 °С 2,1
Нитробензол 18 °С 36,4
Перекись водорода -30 °С – +25 °С 128
Сероуглерод 20 °С 2,6
Скип@$&р 20 °С 2,2
Совол 50 Гц, 20 °С 5,1
Спирт метиловый 13,4 °С 35,4
Спирт этиловый 0 °С 27,88
10 °С 26,41
14,7 °С 26,8
20 °С 25,00
25 °С 24,25
30 °С 23,52
40 °С 22,16
50 °С 20,87
Толуол 14,4 °С 2,4
Углерод четыреххлористый 20 °С 2,24
25 °С 2,23
40 °С 2,20
50 °С 2,18
Формамид 20 °С 84
Фурфурол 42
Хлороформ 22 °С 5,2
Этиленгликоль 37
Эфир этиловый 18 °С 4,3
Газы
Азот 0 °С 1,000606
20 °С 1,000581
Вакуум 1
Водород 0 °С 1,000264
20 °С 1,000273
Воздух 0 °С 1,000590
19 °С 1,000576
Гелий 0 °С 1,000068
Кислород 0 °С 1,000524
18 °С 1,000550
Метан 0 °С 1,000953
Пары воды 18 °С 1,007800
Углекислый газ 18 °С 1,000970
Минералы
Алмаз 18 °С 16,5
Апатит 18 °С 8,5
Графит 10–15
Кварц кристаллический 18 °С 4,5
Кварц плавленный 18 °С 3,5–4,1
Слюда 18 °С 5,7–7,0
Соль каменная 20 °С 5,6
Дерево
Береза сухая 20 °С 3–4
Различные материалы
Асфальт 18 °С 2,7
Бакелит 20 °С 4–4,6
Бакелит 50 Гц, 20 °С 7
Бальзам канадский 18 °С 2,7
Бетон 4,5
Битум 20 °С 2,6–3,3
Битум 50 Гц, 20 °С 3
Бумага 18 °С 2,0–2,5
Воск пчелиный 20 °С 2,8–2,9
Канифоль 20 °С 3,5
Керамика 20 °С 10–20
Кость слоновая 18 °С 6,9
Лакоткань стеклянная 50 Гц 4,0–6,0
Лакоткань хлопчатобумажная 50 Гц 4,0–6,0
Лакоткань шелковая 50 Гц 4,0–6,0
Лед -18 °С 3,2
Мрамор 18 °С 8,3
Парафин 20 °С 2,2–2,3
Плексиглас 20 °С 3,0–3,6
Прессшпан 20 °С 3–4
Радиофарфор (Керамика) 20 °С 6,0
Сера 18 °С 3,6–4,3
Слюда мусковит 20 °С 4,5–8
Слюда флогопит 20 °С 4–5,5
Стекло 50 Гц, 20 °С 5,3–7,5
Стекло зеркальное 18 °С 6–7
Тиконд (Керамика) 20 °С 25–80
Ультрафарфор (Керамика) 20 °С 6,3–7,5
Фарфор 18 °С 5,0–6,8
Фарфор электротехнический 20 °С 6,5
Фибра сухая 20 °С 2,5–8
Целлулоид 20 °С 3–4
Шелк натуральный 20 °С 4–5
Шеллак 20 °С 3,5
Шифер 20 °С 6–7
Электрокартон 50 Гц, 20 °С 3,0
Янтарь 20 °С 2,7–2,9
Читайте также:
В пробирке находится раствор нитрата серебра с каким металлом будет реагировать данная соль

Литература

  1. Справочник по элементарной физике / Н.Н. Кошкин, М.Г. Ширкевич. М., Наука. 1976. 256 с.
  2. Высокочастотный нагрев диэлектрических материалов в машиностроении / Н.П. Глуханов, И.Г. Федорова. Л., Машиностроение, 1972. 160 с.
  3. Высокочастотная сварка пластмасс / Под ред. А.Н. Шамова. — Л.: Машиностроение, 1990. — 80 с.
  4. Краткий физико-технический справочник. Т.1 / Под общ. ред. К.П. Яковлева. М.: ФИЗМАТГИЗ. 1960. – 446 с.
  5. Расчет характеристик элементов цепей радиоэлектронной аппаратуры / И.Я. Гликман, Ю.С. Русин. М., Советское радио, 1976. 160 с.
  • 32672 просмотра

Источник: weldworld.ru

Рейтинг
Загрузка ...