3. Ртуть Hg
Ртуть — единственный чистый металл, который при нормальной температуре находится в жидком состоянии. Он обладает следующими свойствами:
легко испаряется даже при комнатной температуре, и пары ее очень вредны;
применение паров ртути в газоразрядных приборах обусловлено более низким потенциалом ионизации по сравнению с обычными и инертными газами;
чистая ртуть и ее соединения относятся к ядовитым веществам;
в ртути хорошо растворяются щелочные и редкоземельные металлы (магний, алюминий, цинк, олово, свинец, кадмий, платина, серебро, золото);
слабо растворяются в ртути медь и никель;
не растворяются в ртути железо и титан.
Получают ртуть металлургическим способом, подвергая ее многократной очистке. Завершающей операцией является вакуумная перегонка при температуре примерно 200 °С.
Применяют ртуть в лампах дневного света, для ртутных контактов в реле, в качестве жидкого катода в ртутных выпрямителях, в ртутных лампах.
Чем не угодила ртуть правителям земли
Полупроводниковые материалы
Полупроводниковые материалы обладают проводимостью, которой можно управлять, изменяя напряжение, температуру, освещенность и другие факторы. По способности проводить электрический ток полупроводники занимают промежуточное положение между проводниками и диэлектриками.
Способность проводить электрический ток характеризуется удельным электрическим сопротивлением или удельной электрической проводимостью
. Диапазон значений удельного электрического сопротивления
для проводников при комнатной температуре составляет от 1,6•10 -8 до 1•10 -6 Ом•м.
Для низкочастотных изоляционных материалов удельное электрическое сопротивление изменяется от 10 6 . 10 8 до 10 14 .. 10 16 Ом•м. Удельное электрическое сопротивление для полупроводников составляет 10 -6 …10 9 Ом-м. Эти границы условны и в определенном диапазоне перекрываются. Это связано с особенностями этих групп материалов.
Одной из особенностей полупроводниковых материалов является, их поведение при изменении температуры. У проводниковых материалов при температуре, стремящейся к нулю, удельная электрическая проводимость

🔥 Эксперименты со РТУТЬЮ. Как оживить ртуть и получить из нее ЗОЛОТО.
Рис. 4.1. Зависимость удельной проводимости металлов (1) и полупроводников (2) от температуры
Такой характер поведения полупроводников при изменении температуры позволяет использовать тепло для управления их удельной электрической проводимостью.
Поведение полупроводника зависит также от его внутренней структуры. В проводниковых материалах проводимость связана с появлением свободных зарядов, что вызвано изменением температуры и внутренним строением проводника. Для появления свободных носителей заряда в полупроводниковом материале требуется внешняя энергия (тепловая, механическая нагрузка, облучение ядерными частицами, электрическое и магнитное поля и т.д.). Если носители заряда появились под действием тепла, то они называются равновесными. В результате воздействия на полупроводник других видов энергии образуются дополнительные неравновесные носители зарядов.
Электропроводность полупроводника резко изменяется при введении в него даже незначительного числа атомов примесного вещества. Она зависит также не только количества, но и вида постороннего элемента. Например, при введении в химически чистый германий 0,001 % мышьяка его удельная проводимость увеличивается в 10 000 раз.
Полупроводники допускают обратное преобразование электрической энергии в тепловую, световую или механическую.
Источник: studfile.net
Электропроводность увеличивается от ртути к серебру
«О сколько нам открытий чудных. »
Познавательные книги для детей: прошлое и настоящее
Ртуть — «серебряная вода» (свойства и применение металла)
Имя: hochu_vse_snat
Текущий месяц
Метки (общий указатель)
30-сент-2011 12:47 am
Исключение из правил
Более двухсот лет назад М. В. Ломоносов дал простое и ясное определение понятия «металл». Он писал: «Металлы ― тела твердые, ковкие, блестящие». И действительно, железо, алюминий, медь, золото, серебро, свинец, олово и другие металлы, с которыми нам приходится сталкиваться, полностью соответствуют такой формулировке. Но ведь недаром говорят, что нет правил без исключений.
В природе имеется приблизительно 80 металлов, и только один из них при обычных условиях находится в жидком состоянии. Вы, разумеется, догадались, что речь идет о ртути.
Дальние родственники
На примере ртути и ее антипода вольфрама можно убедиться в том, как широк диапазон свойств металлов. Если вольфрам плавится почти при 3400°С (для сравнения укажем, что температура пламени в рабочем пространстве мартеновской печи даже в фокусе горения не превышает 2000°С), то ртуть при лютом морозе продолжает оставаться жидкой, затвердевая лишь при ―38,9°С. Как видите, хотя ртуть и вольфрам принадлежат к одной большой семье металлов, иначе как «дальними родственниками» их не назовешь.
Молоток из ртути
Впервые ртуть была заморожена в 1759 году. В твердом состоянии она представляет собой серебристо-синеватый металл, напоминающий по внешнему виду свинец. Если ртуть налить в форму, имеющую очертания молотка, а затем быстро охладить до затвердевания, например, жидким воздухом, то ртутным молотком можно с успехом забить гвоздь в доску, но при этом нужно торопиться, поскольку такой инструмент весьма недолговечен и может растаять на глазах.
Ртуть ― самая тяжелая из всех известных жидкостей: ее плотность 13,6 грамма на кубический сантиметр. Это значит, что литровая бутылка ртути весит больше, чем ведро с водой. Если бы какому-нибудь штангисту пришлось опустить свою стальную штангу не на помост, а в резервуар со ртутью, то этот тяжелейший снаряд не утонул бы в ней, а остался бы преспокойно покачиваться на поверхности жидкого металла, как пробка в воде: ведь железо значительно легче ртути. .
http://www.youtube.com/watch?v=tOjtMnlp4qU — опыт «Ртутный молоток» (замораживание ртути в жидком азоте)
Трагедия на «Триумфе». Запрещены законом
. В наши дни заворот кишок устраняют другими, более надежными способами, но различные соединения ртути и сейчас широко применяют в медицине: так, сулема обладает дезинфицирующими свойствами; каломель служит слабительным; меркузал используют как мочегонное средство: некоторые ртутные мази употребляют при кожных и других заболеваниях.
Нельзя, однако, забывать, что соединения и пары ртути могут вызвать острые отравления человеческого организма. Так, в 1810 году на английском корабле «Триумф» более двухсот человек отравились ртутью, вылившейся из бочки. Вот почему в СССР и многих других странах некоторые производства, связанные с применением ртути и ее соединений, например изготовление ртутных красок, категорически запрещены законом. В тех случаях, когда без ртути не обойтись, проводят различные профилактические мероприятия, которые предохраняют здоровье рабочих от ее губительного воздействия. .
Модное увлеченье. Монархи строят лаборатории
. Итак, алхимикам, вооруженным столь «солидной научной теорией», оставалось лишь найти «философский камень», при помощи которого можно было бы превращать ртуть в золото, и, засучив рукава, приниматься за работу. Но вот беда: поиски «философского камня» затянулись несмотря на то, что в их удачном исходе были заинтересованы такие влиятельные особы, как английский король Генрих VI, император «Священной Римской империи» Рудольф II и другие европейские монархи, создававшие у себя при дворе крупные алхимические лаборатории.
Правда, кое-какие плоды эти исследования все же принесли: придворный алхимик Генриха VI обнаружил, что натертая ртутью медь приобретает серебристый оттенок, и король оперативно внедрил это «открытие» в жизнь: он выпустил под видом серебряных большую партию медных монет, покрытых ртутью, прикарманив на этой операции солидную сумму.
Фокусы средневековых шарлатанов
Время от времени в разных странах появлялись лица, якобы овладевшие тайной «философского камня». Иногда это были заблуждавшиеся ученые, а чаще ― шарлатаны, знавшие немало способов «получения» искусственного золота.
Один из них заключался в следующем. На глазах присутствующих алхимик помешивал расплавленный свинец или ртуть, находящиеся в тигле, деревянной палочкой, в которую были предварительно спрятаны кусочки золота. Частично это золото растворялось в расплавленном металле. После «эксперимента» в тигле, естественно, можно было обнаружить следы золота, которое свидетельствовало, а точнее лжесвидетельствовало, о чудесном превращении.
Однако слухи об этих «кудесниках» рано или поздно доходили до правителя страны, и тогда им приходилось либо признаваться в обмане, либо организовывать при дворе массовое производство золота, а уж тут деревянная палочка была плохим помощником.
Возможны варианты
Уличенного во лжи алхимика обычно вешали, как фальшивомонетчиков ― на позолоченной виселице, в одежде, усыпанной блестками. Впрочем, были и другие варианты казни. В 1575 году, например, герцог Люксембургский сжег заживо в железной клетке женщину-алхимика Марию Зиглерин за отказ сообщить ему состав «философского камня», который она по вполне понятным причинам не знала, хоть и утверждала на свою беду обратное.
Подпольные эксперименты. Под горячую руку
Спустя некоторое время алхимия была предана проклятию католической церковью и официально запрещена в Англии, Франции и других странах. Но подпольные алхимические эксперименты не прекращались; продолжались и казни. Под горячую руку попал французский химик Жан Барилло, который был казнен только за то, что изучал в своей лаборатории химические свойства элементов. Его опыты показались подозрительными, и судьба ученого была тотчас же решена.
Изворотливый Меркурий
В дошедших до наших дней алхимических рецептах ртуть часто называют Меркурием. Это название было дано металлу еще в Древнем Риме за способность капелек ртути быстро «бегать» по гладкой поверхности, чем она, по мнению римлян, напоминала хитрого, ловкого и изворотливого бога Меркурия ― покровителя торговли. Кстати, и другие элементы в алхимической литературе были зашифрованы: золото обозначалось символом Солнца, железо ― планеты Марса, медь ― планеты Венеры и т. д. Таким образом алхимики скрывали свои знания от посторонних, которые не были знакомы с их символикой.
Творение Монферрана
Способность ртути растворять многие металлы, образуя так называемые амальгамы, была замечена еще до нашей эры. В более поздние времена амальгамы использовали для покрытия медных церковных куполов тончайшим слоем золота. Таким способом был позолочен, например, купол Исаакиевского собора ― изумительного памятника архитектуры, созданного в 1818―1858 годах в Петербурге по проекту Огюста Монферрана.
Более ста килограммов червонного золота было нанесено амальгамацией на медные листы, из которых выполнен гигантский, диаметром около 26 метров, купол этого собора. Поверхность медных листов тщательно очищали от жира, шлифовали и полировали, а затем покрывали амальгамой ― раствором золота в ртути.
После этого листы нагревали на специальных жаровнях до тех пор, пока ртуть не испарялась, а на листе при этом оставалась тонкая (толщиной несколько микрон) пленка золота. Но легкий синевато-зеленый дымок паров ртути, который, казалось, бесследно исчезал, успевал «по пути» отравить рабочих, занимавшихся позолотой. И хотя по правилам тогдашней «техники безопасности» позолотчики пользовались стеклянными колпаками, эта «спецодежда» не могла спасти от отравления. Люди погибали в страшных муках. По свидетельству современников, золочение купола стоило жизни 60 рабочим.
Зеленая губная помада
С амальгамами связаны не только печальные факты, но и забавные истории. Рассказывают, будто бы в начале нашего века один исследователь пытался получить золото из ртути, воздействуя на ее пары мощными электрическими разрядами. Много времени и труда потратил он, и вот, наконец, пришел успех: в ртути появились первые следы золота. Радость экспериментатора не знала границ.
Каково же было разочарование, когда выяснилось, что золото попало в ртуть с. золотой оправы его собственных очков. Поправляя время от времени очки руками, на которых были мельчайшие капельки ртути, ученый переносил золото в виде амальгамы в исследуемую ртуть.
Амальгамы и сейчас применяют в ряде случаев для золочения металлических изделий (разумеется, при этом дело обходится без жертв), в производстве зеркал, в зубоврачебном деле, в лабораторной практике.
Из ртутной соли гремучей кислоты (гремучей ртути) изготовляют взрывчатые вещества.
Широко применяют в технике ртуть и в чистом виде. В химической промышленности, например, она участвует в производстве хлора, едкого натра, синтетической уксусной кислоты. Весьма надежны и долговечны ртутные вентили, служащие для выпрямления переменного тока.
Высоковольтный ртутный вентиль (1960) Ртутный выпрямитель
В автоматической и измерительной аппаратуре используют ртутные выключатели, которые обеспечивают мгновенное замыкание и размыкание электрической цепи.
Ртутно-кварцевые лампы позволяют получить интенсивное ультрафиолетовое излучение. В медицине эти лампы служат для обезвреживания воздуха в операционных залах, для облучения организма человека в лечебных целях.
В 1922 году чешский химик Ярослав Гейровский открыл полярографический метод химического анализа, в котором ртуть играет далеко не последнюю роль. За это открытие ученый был удостоен Нобелевской премии.
Разреженными парами ртути с добавкой аргона наполнены стеклянные трубки люминесцентных ламп. Еще в 1937 году была предпринята попытка использовать ртутные лампы для освещения улицы Горького в Москве. Но вскоре от этих ламп пришлось отказаться, так как излучаемый ими мертвенно-бледный свет придавал лицам людей малопривлекательный землистый оттенок, а губная помада, например, из красной превращалась в зеленую.
В дальнейшем удалось разработать специальные составы ― люминофоры, которые, будучи нанесенными на внутреннюю поверхность ламп, позволяют получать свет различной окраски, в частности белый свет, очень близкий к дневному.
Ртуть ― «главное действующее лицо» во многих физических приборах ― манометрах, барометрах, вакуумных насосах. Но, пожалуй, наиболее распространенные ртутные приборы ― это термометры.
Фердинанд II рекомендует спирт
В XVII веке, когда были созданы первые приборы для измерения температуры, рабочей жидкостью в них служила вода, но на холоде она замерзала, стекло разлеталось вдребезги и термометры выходили из строя. Тосканский герцог Фердинанд II, по-видимому, достаточно хорошо знакомый с винным спиртом, предложил использовать его вместо воды ― термометры стали более надежными, но, поскольку качество спирта не всегда было одинаковым, в показаниях приборов наблюдались заметные расхождения. Первым, кто начал измерять температуру при помощи ртути, был французский физик Амонтон. Спустя несколько лет немецкий физик Фаренгейт создал свой ртутный термометр со шкалой, которая до сих пор употребляется в Англии и США.
В наше время ртутные термометры имеют самое разнообразное назначение. От этого зависит конструкция термометра, в частности толщина капилляра, по которому перемещается ртуть. Самый тонкий капилляр у медицинского градусника ― всего 0,04 миллиметра. Чтобы этот тончайший столбик ртути можно было заметить невооруженным глазом, капилляр делают в форме трехгранной увеличительной призмы, а на его заднюю стенку наносят «экран» ― полоску белой эмали.
Поскольку ртуть не должна опускаться, пока ее не стряхнешь, нужно в каком-то месте канал сузить, но и без того узкий трехгранник сужать уже нельзя. Поэтому к нему снизу припаивают маленькую цилиндрическую трубку и в ней делают пережим.
Трудные испытания
Применяемая для термометров ртуть должна отличаться особой чистотой: ведь малейшие примеси могут существенно исказить показания. Вот почему ртуть подвергают специальной обработке, промывают, дистиллируют и только после этого заполняют ею стеклянные капилляры.
Кстати, несмотря на хрупкость стекла, оно пока является незаменимым в этом случае материалом. Использовать вместо него, допустим, прозрачную пластмассу нельзя: она, как решето, пропускает губительный для ртути кислород.
Заполнение капилляра ртутью ― очень ответственная операция: в трубку не должен попадать воздух. Раньше, когда этот процесс выполняли вручную, мастерам приходилось по нескольку недель нагревать поочередно то один, то другой конец заполненной ртутью стеклянной трубочки, изгоняя оттуда воздушные пузырьки. Сейчас с этим делом быстро и успешно справляются машины.
Прежде чем попасть к месту своей будущей «работы», термометры проходят еще много испытаний и проверок. Увы, некоторых из них ждет печальный приговор: «Брак». Жизненный путь этого неудачника тут же заканчивается в корзине для отходов. Но зато можно не сомневаться в точности тех термометров, которые выдержали все «экзамены» и получили своего рода «аттестат зрелости» ― заводское клеймо. Беспристрастная капелька ртути, заключенная в стеклянный капилляр, будет верно служить науке, промышленности, сельскому хозяйству, медицине.
С. Венецкий. «Серебряная вода» / Рассказы о металлах
- Tags: * Венецкий С., МЕДИЦИНА, амальгама, краски, лампа люминесцентная, металлы — ртуть, монеты, освещение, термометр
Источник: hochu-vse-snat.livejournal.com