Галлий — элемент главной подгруппы третьей группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 31. Обозначается символом Ga (лат. Gallium). Относится к группе лёгких металлов. Простое вещество галлий (CAS-номер: 7440-55-3) — мягкий пластичный металл серебристо-белого (по другим данным светло-серого) цвета с синеватым оттенком.
История
Схема атома галлия
Французский химик Поль Эмиль Лекок де Буабодран вошел в историю как открыватель трех новых элементов: галлия (1875), самария (1879) и диспрозия (1886). Первое из этих открытий принесло ему славу.
В то время за пределами Франции он был мало известен. Ему было 38 лет, занимался он преимущественно спектроскопическими исследованиями. Спектроскопистом Лекок де Буабодран был хорошим, и это, в конечном счете, привело к успеху: все три свои элемента он открыл методом спектрального анализа.
ГАЛЛИЙ и РТУТЬ. Металл-хищник, но у него есть сердце.
Происхождение названия
Д. И. Менделеев в соответствии с открытым им в марте 1869 года периодическим законом предсказал существование этого элемента, назвав его эка-алюминием. Поль Эмиль Лекок де Буабодран назвал его в честь своей родины Франции, по её латинскому названию — Галлия ( Gallia ). Примечательно так же, что символ Франции — петух (по-французски — le coq ), так что в названии элемента его первооткрыватель неявно увековечил и свою фамилию. Кроме того на латыни «петух» — gallus . Открытие галлия — первое подтверждение справедливости выявленных Д. И. Менделеевым закономерностей.
Нахождение в природе
Основные мировые резервы галлия связывают с месторождениями бокситов, запасы которых настолько велики, что не будут истощены в течение многих десятилетий. Однако большая часть галлия, содержащегося в боксите, остается недоступной вследствие недостатка производственных мощностей, объем которых диктуется экономическими причинами.
Реальные запасы галлия трудно поддаются оценке. По мнению специалистов U.S. Geological Surveys мировые ресурсы галлия, связанные с месторождениям бокситов, составляют 1 млн тонн. Значительными запасами галлия обладают Китай, США, Россия, Украина, Казахстан.
Получение
Галлий получают электролизом щелочного раствора галлата натрия. При электролизе одновременно с галлием на катоде выделяется водород, причем потенциалы их, как уже отмечалось, близки. Смещение потенциала галлия в отрицательную сторону с ростом щелочности раствора ведет к снижению доли тока, затрачиваемого на выделение галлия и, соответственно, возрастанию доли тока, затрачиваемого на выделение водорода. Для повышения выхода галлия по току растворы должны содержать минимальное количество щелочи.
С повышением концентрации галлия в растворе выход по току возрастает вследствие смешения потенциала в положительную сторону.
С ростом катодной плотности тока скорость выделения водорода возрастает в большей степени, чем галлия, поэтому выбирают оптимальную плотность тока, при которой обеспечивается необходимая скорость выделения галлия.
Электролит приготовляют, растворяя галлиевый концентрат или технический оксид галлия в растворе гидроксида натрия. В зависимости от состава исходного материала растворы содержат, г/л: Ga2O3 5-100, Al2О3 70-150 (при растворении концентрата), NaOH 100—200, примеси соединений Si, Pb, Zn, Си, V, Mo, Fe и др.
Электролиз проводят при 50-70 °C в прямоугольных ваннах. Катоды из нержавеющей стали и аноды (из стали или никеля) расположены последовательно, расстояние между ними 2-4 см. Жидкий галлий стекает с катода на дно ванны. Электролиз ведут при катодной плотности тока i = 0,3 + 1,5 А/см² и анодной плотности тока в 3 — 10 раз ниже катодной. При концентрации галлия 50 — 100 г/л выход по току составляет (в зависимости от плотности тока) 30-60 %. За 6 — 10 ч электролиза выделяется 97 — 99 % галлия.
Примеси Cu, Zn, Pb, Sn, Fe осаждаются вместе с галлием. Кремний и алюминий переходят в металл в малой степени. Примеси VO3 и МоО2,- восстанавливаются до низших оксидов, образующих налет на катоде, что тормозит электролиз.
Разработаны варианты проведения электролиза с жидким галлиевым катодом. В этом случае галлий выделяется при более высоком потенциале, чем на твердом катоде из нержавеющей стали. Это повышает выход по току и позволяет выделять галлий из растворов с относительно низкой его концентрацией.
Физические свойства
Кристаллический галий имеет несколько полиморфных модификаций, однако термодинамически устойчивой является только одна (I), имеющая орторомбическую (псевдотетрагональную) решётку с параметрами а = 4,5186 Å, b = 7,6570 Å, c = 4,5256 Å. Другие модификации галлия (β, γ, δ, ε) кристаллизуются из переохлаждённого диспергированного металла и являются нестабильными. При повышенном давлении наблюдались ещё две полиморфные структуры галлия II и III, имеющие, соответственно, кубическую и тетрагональную решётки [1] .
Плотность галлия в твёрдом состоянии при температуре T=20 °C равна 5,904 г/см³, жидкий галлий при T=29,8 °C имеет плотность 6,095 г/см³, то есть при затвердевании объём галлия увеличивается. Температура плавления галлия немного выше комнатной и равна Tпл.=29,8 °C, кипит галлий при Tкип.=2230 °C.
Одной из особенностей галлия является широкий температурный интервал существования жидкого состояния (от 30 и до 2230 °C), при этом он имеет низкое давление пара при температурах до 1100÷1200 °C. Удельная теплоёмкость твёрдого галлия в температурном интервале T=0÷24 °C равна 376,7 Дж/кг·К (0,09 кал/г·град.), в жидком состоянии при T=29÷100 °C — 410 Дж/кг·К (0,098 кал/г·град).
Удельное электрическое сопротивление в твёрдом и жидком состоянии равны, соответственно, 53,4·10 −6 ом·см (при T=0 °C) и 27,2·10 −6 ом·см (при T=30 °C). Вязкость жидкого галлия при разных температурах равна 1,612 пуаз при T=98 °C и 0,578 пуаз при T=1100 °C. Поверхностное натяжение, измеренное при 30 °C в атмосфере водорода равно 0,735 н/м. Коэффициенты отражения для длин волн 4360 Å и 5890 Å составляют 75,6 % и 71,3 %, соответственно.
Природный галлий состоит из двух изотопов 69 Ga (61,2 %) и 71 Ga (38,8 %). Поперечное сечение захвата тепловых нейтронов равно для них 2,1·10 −28 м² и 5,1·10 −28 м², соответственно.
Химические свойства
Основные соединения
- Ga2H6 — летучая жидкость, tпл −21,4 °C, tкип 139 °C. В эфирной суспензии с гидратом лития или таллия образует соединения LiGaH4 и TlGaH4. Образуется в результате обработки тетраметилдигаллана триэтиламином. Имеются банановые связи, как и в диборане
- Ga2O3 — белый или жёлтый порошок, tпл 1795 °C. Существует в виде двух модификаций. α-Ga2О3 — бесцветные тригональные кристаллы с плотностью 6,48 г/см³, малорастворимые в воде, растворимые в кислотах. β-Ga2О3 — бесцветные моноклинные кристаллы c плотностью 5,88 г/см³ [2], малорастворимые в воде, кислотах и щёлочах. Получают нагреванием металлического галлия на воздухе при 260 °C или в атмосфере кислорода, или прокаливанием нитрата или сульфата галлия. ΔH°298(обр) −1089,10 кДж/моль; ΔG°298(обр) −998,24 кДж/моль; S°298 84,98 Дж/моль*K. Проявляют амфотерные свойства, хотя основные свойства, по сравнению с алюминием, усилены:
Ga2O3 + 6HCl = 2GaCl2Ga2O3 + 2NaOH + 3H2O = 2Na[Ga(OH)4]Ga2O3 + Na2CO3 = 2NaGaO2 + CO2
- Ga(OH)3 — выпадает в виде желеобразного осадка при обработке растворов солей трёхвалентного галлия гидроксидами и карбонатами щелочных металлов (pH 9,7). Растворяется в концентрированном аммиаке и концентрированном растворе карбоната аммония, при кипячении осаждается. Нагреванием гидроксид галлия можно перевести в GaOOH, затем в Ga2O3*H2O, и, наконец, в Ga2O3. Можно получить гидролизом солей трёхвалентного галлия.
- GaF3 — белый порошок. tпл >1000 °C, tкип 950 °C , плотность — 4,47 г/см³. Малорастворим в воде. Известен кристаллогидрат GaF3*3Н2O. Получают нагреванием оксида галлия в атмосфере фтора.
- GaCl3 — бесцветные гигроскопичные кристаллы. tпл 78 °C, tкип 215 °C, плотность — 2,47 г/см³. Хорошо растворим в воде. В водных растворах гидролизуется. Получают непосредственно из элементов. Применяется в качестве катализатора в органических синтезах.
- GaBr3 — бесцветные гигроскопичные кристаллы. tпл 122 °C, tкип 279 °C плотность — 3,69 г/см³. Растворяется в воде. В водных растворах гидролизуется. В аммиаке малорастворим. Получают непосредственно из элементов.
- GaI3 — гигроскопичные светло-жёлтые иглы. tпл 212 °C, tкип 346 °C, плотность — 4,15 г/см³. Гидролизуется тёплой водой. Получают непосредственно из элементов.
- GaS3 — жёлтые кристаллы или белый аморфный порошок с tпл 1250 °C и плотностью 3,65 г/см³. Взаимодействует с водой, при этом полностью гидролизуется. Получают взаимодействием галлия с серой или сероводородом.
- Ga2(SO4)3*18H2O — бесцветное, хорошо растворимое в воде вещество. Получается при взаимодействии галлия, его оксида и гидроксида с серной кислотой. С сульфатами щелочных металлов и аммония легко образует квасцы, например, KGa(SO4)2*12Н2О.
- Ga(NO3)3*8H2O — бесцветные, растворимые в воде и этаноле кристаллы. При нагревании разлагается с образованием оксида галлия (III). Получается действием азотной кислоты на гидроксид галлия.
4LiH + GaCl3 = Li[GaH4] + 3LiCl
Устойчивость ионов падает в ряду BH4 — → AlH4 — → GaH4 — . Ион BH4 — устойчив в водном растворе, AlH4 — и GaH4 — быстро гидролизуются:
GaH4— + 4H2O = Ga(OH)3 + OH- + 4H2-
При нагревании под давлением галлий реагирует с водой:
2Ga + 4H2O = 2GaOOH + 3H2-
С минеральными кислотами Ga медленно реагирует с выделением водорода:
2Ga + 6HCl = 2GaCl3 + 3H2↑
Галлий растворяется в щелочах с образованием гидроксогаллатов:
2Ga + 6H2O + 2NaOH = 2Na[Ga(OH)4] + 3H2↑
При растворении Ga(OH)3 и Ga2O3 в кислотах образуются аквакомплексы [Ga(H2O)6] 3+ , поэтому из водных растворов соли галлия выделяются в виде кристаллогидратов, например, хлорид галлия GaCl3*6H2O, галлийкалиевые квасцы KGa(SO4)2*12H2O. Аквакомплексы галлия в растворах бесцветны.
Применение
Арсенид галлия GaAs — перспективный материал для полупроводниковой электроники.
Галлий дорог, в 2005 году на мировом рынке тонна галлия стоила 1,2 млн долларов США, и в связи с высокой ценой и в то же время с большой потребностью в этом металле очень важно наладить его полное извлечение при алюминиевом производстве и переработке каменных углей на жидкое топливо.
Галлий имеет ряд сплавов, жидких при комнатной температуре, и один из его сплавов имеет температуру плавления 3 °C, но с другой стороны галлий (сплавы в меньшей степени) весьма агрессивен к большинству конструкционных материалов (растрескивание и размывание сплавов при высокой температуре), и как теплоноситель он малоэффективен, а зачастую просто неприемлем.
Галлий — превосходный смазочный материал. На основе галлия и никеля, галлия и скандия созданы практически очень важные металлические клеи.
Оксид галлия входит в состав ряда стратегически важных лазерных материалов группы гранатов — ГСГГ, ИАГ, ИСГГ и др.
Биологическая роль и особенности обращения
Не играет биологической роли.
Контакт кожи с галлием приводит к тому, что сверхмалые дисперсные частицы металла остаются на ней. Внешне это выглядит как серое пятно. Имелись сообщения о развитии дерматитов при контакте с галлием.
О токсичности галлия мало данных. Из-за низкой температуры плавления слитки галлия рекомендуется транспортировать в пакетах из полиэтилена, который плохо смачивается жидким галлием.
Источник: himsnab-spb.ru
Галлий, свойства атома, химические и физические свойства
Галлий, свойства атома, химические и физические свойства.
Поделиться в:
69,723(1) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 1
Галлий — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 31. Расположен в 13-й группе (по старой классификации — главной подгруппе третьей группы), четвертом периоде периодической системы.
Физические свойства галлия
Атом и молекула галлия. Формула галлия. Строение атома галлия:
Галлий (лат. Gallium, назван в честь Франции) – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Ga и атомным номером 31. Расположен в 13-й группе (по старой классификации – главной подгруппе третьей группы), четвертом периоде периодической системы.
Галлий – металл. Относится к группе редких, рассеянных, цветных металлов .
Галлий обозначается символом Ga.
Как простое вещество галлий при нормальных условиях представляет собой мягкий, хрупкий металл серебристо-белого (по другим данным светло-серого) цвета с синеватым оттенком.
Молекула галлия одноатомна.
Химическая формула галлия Ga.
Электронная конфигурация атома галлия 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 1 . Потенциал ионизации (первый электрон) атома галлия равен 578,84 кДж/моль (5,9993020 (12) эВ).
Строение атома галлия. Атом галлия состоит из положительно заряженного ядра (+31), вокруг которого по четырем оболочкам движутся 31 электронов. При этом 28 электронов находятся на внутреннем уровне, а 3 электрона – на внешнем. Поскольку галлий расположен в четвертом периоде, оболочек всего четыре. Первая – внутренняя оболочка представлена s-орбиталью.
Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внутренняя оболочка представлена s-, р- и d-орбиталями. Четвертая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома галлия находятся два спаренных – на s-орбитали и один неспаренный – на р-орбитали электроны. В свою очередь ядро атома галлия состоит из 31 протона и 39 нейтронов.
Галлий относится к элементам p-семейства.
Радиус атома галлия (вычисленный) составляет 136 пм.
Атомная масса атома галлия составляет 69,723(1) а. е. м.
Источник: xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai
Галлий – металл, который плавится в руках
Галлий – металл, который плавится в руке. Вещество имеет температуру плавления, что составляет 29,76 о С. Если поместить его в теплую ладонь, оно постепенно начинает переходить из твердого состояния в жидкую форму.
Краткий экскурс в историю
Как называется металл, который плавится в руке? Как уже было отмечено выше, такой материал известен под определением галлий. Его теоретическое существование предсказал в далеком 1870 году отечественный ученый, автор таблицы химических элементов – Дмитрий Менделеев. Основой к возникновению такого предположения стало изучение им свойств многочисленных металлов. На то время ни одному теоретику не могло прийти в голову, что металл, который плавится в руках, существует в реальности.
Возможность синтеза чрезвычайно легкоплавкого материала, появление которого предсказывал Менделеев, доказал французский ученый Эмиль Лекок де Буабодран. В 1875 году ему удалось выделить галлий из цинковой руды. Во время опытов с материалом ученый получил металл, который плавится в руках.
Известно, что Эмиль Буабодран испытывал значительные трудности с выделением нового элемента из цинковой руды. В ходе первых опытов ему удалось добыть всего лишь 0,1 грамма галлия. Однако даже этого оказалось достаточно, чтобы подтвердить удивительное свойство материала.
Где встречается галлий в природе
Галлий относится к элементам, которые не встречаются в виде залежей руд. Материал очень рассеян в земной коре. В природе он встречается в составе крайне редких минералов, таких как галлит и зенгеит. В ходе лабораторных опытов небольшое количество галлия можно выделить из руд цинка, алюминия, германия, железа. Иногда его находят в бокситах, залежах угля, прочих месторождениях полезных ископаемых.
Как получают галлий
В настоящее время ученые чаще всего синтезируют металл, который плавится в руках, из алюминиевых растворов, что добываются в ходе переработки глинозема. В результате удаления основной массы алюминия и проведения процедуры неоднократного концентрирования металлов получают щелочной раствор, в котором находится незначительная доля галлия. Выделяют такой материал из раствора путем электролиза.
Сферы применения
Галлий по сей день не нашел применения в промышленности. Виной всему широкое использование алюминия, который обладает схожими свойствами в твердом виде. Несмотря на это, галлий выглядит перспективным материалом, поскольку обладает отменными полупроводниковыми качествами. Такой металл потенциально может быть использован для производства элементов транзисторов, высокотемпературных выпрямителей тока, солнечных батарей. Галлий выглядит прекрасным решением для изготовления покрытий оптических зеркал, которые будут обладать высочайшей отражательной способностью.
Главным препятствием на пути к применению галлия в промышленных масштабах остается высокая стоимость его синтеза из руд и минералов. Цена за тонну такого металла на мировом рынке составляет более 1,2 миллиона долларов.
На сегодняшний день галлий нашел эффективное применение лишь в сфере медицины. Металл в жидкой форме применяется в целях замедления потери костной массы у людей, что страдают от онкологических недугов. Его используют для быстрой остановки кровотечений при наличии крайне глубоких ран на теле пострадавших. В последнем случае закупорка сосудов галлием не приводит к образованию тромбов.
Интересные опыты с галлием
Как уже отмечалось выше, галлий – металл, который плавится в руках. Поскольку температура, что требуется для перехода материала в жидкое состояние, составляет чуть больше 29 о С, его достаточно подержать в ладонях. Через некоторое время изначально твердый материал начнет плавиться буквально на глазах.
Довольно увлекательный эксперимент можно провести с затвердеванием галлия. Представленный металл имеет свойство расширяться в ходе затвердевания. Для проведения интересного опыта достаточно поместить жидкий галлий в стеклянный пузырек. Далее необходимо начать охлаждать емкость. Через некоторое время можно заметить, как в пузырьке станут образовываться кристаллы металла.
Они будут иметь синеватый цвет, в отличие от серебристого оттенка, который характерен для материала в жидком состоянии. Если не прекращать охлаждение, кристаллизирующийся галлий в конечном итоге разорвет стеклянный пузырек.
В заключение
Вот мы и выяснили, какой металл плавится в руке. Сегодня галлий можно отыскать в продаже для проведения собственных опытов. Однако обращаться с материалом следует крайне осторожно. Твердый галлий является нетоксичным веществом. Однако продолжительный контакт с материалом в жидкой форме может привести к самым непредвиденным последствиям для здоровья, вплоть до остановки дыхания, паралича конечностей и вхождения человека в состояние комы.
Источник: fb.ru