Месторождения и производство алюминия
Алюминий (Al) — мягкий, легкий и пластичный металл цвета. Элемент таблицы Менделеева с атомным номером 13 и третий по распространенности химический элемент в земной коре, уступающий лишь кремнию и кислороду. Самый распространенный металл.
Из традиционных алюминиевых руд — бокситов — в Красноярском крае имеются 2 месторождения: Чадобецкое в Богучанском районе и Татарское в Мотыгинском районе с незначительными разведанными запасами. В нераспределённом фонде недр находится крупное Горячегорское месторождение — его руды требуют обогащения для переработки в глинозём.
При этом в Красноярске расположен второй в мире по величине производитель алюминия — Красноярский алюминиевый завод, входящий в структуру «РУСАЛа». КрАЗ является основной площадкой для опытной эксплуатации и внедрения инновационных разработок «РУСАЛа». На долю завода приходится около 24% российского и 2,4% мирового производства алюминия.
Производственный комплекс состоит из 25 корпусов электролиза, 3 литейных отделений, отделения производства анодной массы. Продукция завода: первичный алюминий, алюминиевые сплавы (в слитках, мелкой и чушке), алюминий высокой чистоты. Программа по снижению выбросов парниковых газов на КрАЗе включена в перечень утвержденных проектов, осуществляемых в соответствии с Киотским протоколом. Основным поставщиком сырья для завода выступает Ачинский глиноземный комбинат.
Состав руды. Получение металлов (7-класс)
Кроме того, в поселке Таежный Богучанского района в рамках Богучанского энергометаллургического объединения строится Богучанский алюминиевый завод.
Свойства
Алюминий является легким металлом цвета с температурой плавления 658—660 °C. Является слабым парамагнетиком. Обладает высокой пластичностью, прокатывается в фольгу. Обладает высокой электропроводностью, теплопроводностью и светоотражательной способностью.
Алюминий образует сплавы почти со всеми металлами. Наиболее известны дюралюминий — сплав с медью и магнием, и силумин — сплав с кремнием. Благодаря покрытию тонкой и прочной, беспористой оксидной пленкой, не дающей металлу реагировать на классические окислители, алюминий практически не подвержен коррозии, что высоко ценится в современной промышленности.
При разрушении оксидной пленки он выступает как активный . Легко реагирует с простыми веществами: щелочами, водой (после удаления пленки), растворяется в соляной и разбавленной серной кислотах. Восстанавливает металлы из их оксидов, что является одним из способов применения алюминия в металлургии.
Происхождение и месторождения
Концентрация алюминия в земной коре оценивается примерно в 8 % по отношению к общей массе, но благодаря своей высокой химической активности алюминий встречается практически исключительно в виде соединений. Наиболее распространенными минералами, используемыми в промышленном производстве алюминия, являются нефелины и бокситы. Также часто встречаются бериллы, каолиниты, полевые шпаты, корунды, алуниты, используемые в иных целях.
Добыча алюминия из глины в домашних условиях как бизнес идея
В качестве микроэлемента алюминий присутствует в тканях растений и животных. Существуют , накапливающие алюминий в своих органах: некоторые плауны, моллюски.
Лидером производства алюминия в мировых масштабах считается Китай. За ним на втором месте идет Россия, затем Канада, США, Австралия, Бразилия, Индия и Норвегия. Монополистом по производству алюминия в России является компания «РУСАЛ», добывающая около 16 % всего глинозема в мире и производящая порядка 13 % мирового объема алюминия.
Применение
Алюминий и его сплавы широко используются в качестве конструкционного материала, из него изготавливают посуду и упаковочные материалы, используют в авиационной и авиакосмической промышленности, в электротехнике, для изготовления проводов и их экранирования, в микроэлектронике, в тепловом оборудовании и криогенной технике, при производстве стройматериалов, зеркал, в химической промышленности и пиротехнике. Сплав алюминия и циркония широко применяют в ядерном реакторостроении.
Алюминием покрывают стали и сплавы для придания антикоррозийных свойств и стойкости к окалине, применяют в металлургии, стекловарении, из алюминия и его сплавов чеканят монеты, делают бижутерию. Кроме того, алюминий и его соединения используются в качестве высокоэффективного ракетного горючего, также алюминий зарегистрирован в качестве пищевой добавки Е173.
ИсточникАЛЮМИ́НИЕВЫЕ РУ́ДЫ
АЛЮМИ́НИЕВЫЕ РУ́ДЫ, природные минер. образования, содержащие алюминий в таких соединениях и концентрациях, при которых их пром. использование технически возможно и экономически целесообразно. Из более 200 алюминийсодержащих пород (в т. ч. аллитов ) практич. интерес для произ-ва глинозёма и металлич. алюминия представляют или могут представлять в обозримом будущем ок.
12 пород. Наибольшее распространение в мире в качестве пром. алюминиевого сырья получили бокситы ; кроме того, в качестве А. р. рассматриваются (а в ряде стран, включая Россию, используются) также алунитовые руды , нефелиновые бесполевошпатовые породы – уртиты и нефелин-апатитовые руды (одновременно служат источником для получения фосфатов).
Потенциальным сырьём для извлечения алюминия являются нефелиновые полевошпатовые породы, а также анортозиты, давсониты, высокоглинозёмистые метаморфич. сланцы (кианитовые, силлиманитовые и андалузитовые) и каолинитовые породы, фонолиты-лейцититы. Возможно извлечение алюминия из золы каменных углей, вмещающих пород железорудных месторождений (напр., район КМА, Россия), красных илов (Северное м., Германия) и др. В России сосредоточены огромные ресурсы пром. небокситового алюминиевого сырья, пригодного для рентабельного произ-ва глинозёма с одновременным получением др. продукции (Кольский п-ов, Сибирь, Дальний Восток) и потенциального алюминиевого сырья. Крупные запасы небокситовых видов А. р. сосредоточены также в США (оцениваются в 160 млрд. т), Канаде, Норвегии, Испании, Италии, Германии, Иране и др.
ИсточникДобыча алюминия: добыча алюминиевой руды и получение металла
На сегодняшний день алюминий — один из самых популярных металлов, который используется как во многих отраслях промышленности, так и в повседневной жизни каждого человека. Удивительно, что этот металл, всего полтора века назад считавшийся дороже золота, занял прочную позицию на рынке и продолжает быть очень востребованным.
Различия по насыщенности
Алюминиевая руда представляет собой горную породу, из которой добывают металл. Алюминий не существует в чистом виде в природе, это химический элемент, который можно найти во многих соединениях, но различной насыщенности. По причине наибольшей рентабельности в настоящее время добыча алюминия производится из бокситов, алунитов и нефелинов.
Наибольшую концентрацию оксида алюминия содержат бокситы (50 % и более). Они являются главным источником глинозема, то есть основного сырья, из которого производится алюминий.
На втором месте по концентрации алюминия в составе находятся алуниты, которые содержат до 40 % глинозема.
На третьей позиции обосновались нефелины. Они представляют собой щелочное образование, которое содержит до 25 % глинозема.
Все остальные соединения содержат глинозем в меньшей концентрации, и нерентабельны в процессе добычи алюминия.
Свойства алюминиевой руды
Алюминий высоко ценился у наших предков, которые открыли этот металл почти два столетия назад, и не теряет актуальности по сей день. Ниже представлены главные свойства алюминия, благодаря которым этот металл особенно ценен:
- относится к группе легких металлов;
- огромные залежи — алюминий занимает третье место после кислорода и кремния с точки зрения распространения на Земле;
- высокая степень пластичности — металл легко поддается механической обработке, литью, полировке и пр.;
- обладает высокой степенью тепло- и энергопроводимости;
- высокая отражательная способность — до 90 %;
- стойкость к коррозии;
- приятный блестящий внешний вид.
Технология разработки алюминиевых залежей
Наиболее важную роль в получении алюминия играют бокситы, в которых наибольшая концентрация глинозема. Сам по себе боксит — это сложная горная порода, и его добыча опирается на нескольких основных способов:
- открытый — считается основным и наиболее популярным методом, который используется, если алюминиевая руда залегает неглубоко (чаще всего это именно бокситы);
- подземный (иначе — шахтный) способ. Этот метод извлечения алюминиевой руды схож по принципу с добычей каменного угля в шахтах (отсюда название).
При выборе метода обработки месторождения алюминиевой руды учитываются такие факторы, как тип месторождения, а также геологические условия его залегания (например, горизонтальное или наклонное).
Процесс срезания пластов алюминиеносных пород земли зависит также во многом от их вида и структуры. Ниже представлены два наиболее распространенных метода:
- Срезка фрезерным способом, когда на помощь приходят карьерные комбайны. Благодаря этим машинам (различным также по своим свойствам в зависимости от модели) происходит срез пласта, толщина которого может достигать 600 мм. Алюминиевые породы обрабатываются таким образом постепенно. После снятия каждого слоя образуются так называемые «полки».
- Альтернативой фрезерной разработки алюминиевой руды, в особенности рыхлой, является работа карьерных экскаваторов. Этот способ применяется, если необходимо сразу погрузить руду на самосвалы с целью дальнейшей транспортировки.
Способы добычи алюминиевой руды
Прямо из руды добыть алюминий невозможно, он слишком быстро окисляется. По этой причине ценный металл получают в несколько стадий:
- Добывание глинозема (окись алюминия) из алюминиевых руд с последующей транспортировкой при помощи самосвалов на обогатительные комбинаты.
- Получение алюминия из глинозема — самая сложная и трудоемкая часть процесса:
- минералы измельчают при помощи дробильных аппаратов;
- затем спекают в печах;
- впоследствии происходит выщелачивание при помощи крепких щелочей — период обработки сырья. Стоит отметить, что добывание глинозема может осуществляться различными способами: кислотным, электролитическим и щелочным. Наиболее популярный метод именно щелочной, его использовали еще в 18 в.;
- декомпозиция, т. е. процесс, в котором полученная алюминатная пульпа попадает на сепарацию, где жидкая составляющая выпаривается;
- рафинирование алюминия, иначе — очищение от лишних щелочей;
- прокаливание в печах — завершающий этап.
В результате сложнейших операций получается сухой глинозем. Из этого сырья получают чистый алюминий при помощи гидролизной обработки.
Для того чтобы получить 1 тонну чистого алюминия, необходимо добыть 2 тонны глинозема. Такое количество глинозема будет содержаться примерно в 4–4,5 тоннах боксита. Количество алунитов или нефелитов должно быть, соответственно, еще больше. Легко сделать вывод, что добыча и производство алюминия — это непростой, энергоемкий и затратный процесс.
Применение алюминиевой руды
Современный мир трудно представить себе без алюминия. Спектр его применения очень широк, и мы иногда не представляем себе, насколько важен этот метал в нашей жизни.
Алюминий широко применяется в машино- и автостроении, авиации, строительстве, стекольной промышленности, а также при производстве электротехники и других мелких товаров народного потребления (например, фольга).
Особенно интересным фактом является то, что алюминий присутствует в нашей жизни также в качестве пищевой добавки под кодом Е173. В качестве пищевого красителя эта добавка разрешена в ряде стран, в том числе и в России. Наиболее часто данный краситель используется в кондитерской отрасли благодаря тому, что он придает изделиям красивый серебристый оттенок. Тем не менее, это небезопасная добавка, и врачи настоятельно рекомендуют потреблять ее очень умеренно и с осторожностью.
Алюминиевая руда имеет богатый состав, и кроме алюминия из нее извлекают другие химические элементы. В основном это цветные металлы, которые в дальнейшем используются для улучшения качества стали, а также титан, ванадий, хром и др.
Извлеченный глинозем также полезен в черной металлургии, где он используется в качестве флюсов.
Во время плавления руды, извлеченной из бокситов, в электропечах получается еще один материал, который называется электрокорундом. Он особенно ценен благодаря своей твердости (уступает только алмазу) и востребован в качестве абразива.
Во время процесса получения алюминия образуются также отходы, которые носят название красный шлам. В их составе элемент скандий, особенно востребованный во многих отраслях как тяжелой (автомобильная, ракетостроительная), так и легкой (производство электроприводов, спортивного оборудования) промышленности.
Альтернатива алюминиевым рудам
Ученые сходятся во мнении, что в настоящее время достойной альтернативы алюминию не существует. Возможно, в будущем удастся найти или создать еще более функциональный и относительно дешевый металл, однако на сегодняшний день алюминий — безусловный лидер.
ИсточникИспользование алюминиевых руд
Алюминиевые руды, как известно, иногда содержат, кроме алюминия, в значительном количестве кремний, железо, титан, калий, натрий, кальций, а также в небольшом количестве цирконий, хром, фосфор, галлий, ванадий и некоторые другие элементы. Однако далеко не все из этих элементов в настоящее время извлекаются из алюминиевых руд и используют для нужд народного хозяйства.
Наиболее полно используют апатито-нефелиновую породу, из которой получают удобрения, глинозем, соду, поташ, цемент и некоторые другие продукты; отвалов почти нет.
При переработке бокситов по способу Байера или спеканием в отвале еще остается много красного шлама, рациональное использование которого заслуживает большого внимания.
Ранее говорилось о том, что для получения 1 т алюминия необходимо затратить много электроэнергии, составляющей пятую часть себестоимости алюминия. В табл. 55 приведена калькуляция себестоимости 1 т алюминия. Из данных, приведенных в таблице, следует, что важнейшими составляющими себестоимости являются сырье и основные материалы, причем на долю глинозема падает почти половина всех расходов. Следовательно, снижение себестоимости алюминия должно в первую очередь идти в направлении уменьшения расходов на производство глинозема.
Теоретически на 1т алюминия необходимо затратить 1,89 т глинозема. Превышение этой величины при фактическом расходе является следствием потерь главным образом от распыления. Эти потери можно уменьшить на 0,5—0,6% путем автоматизации загрузки глинозема в ванны. Снижение себестоимости глинозема можно достичь сокращением потерь на всех стадиях его производства, особенно в отвальном шламе, при транспортировке алюминатных растворов и гидроокиси, а также во время кальцинации глинозема; за счет экономии, полученной от лучшего использования отработанного пара (из самоиспарителей) и полного использования тепла отходящих газов. Это особенно важно для автоклавного способа, расходы на пар в котором значительны.
Внедрение непрерывного выщелачивания и выкручивания на; передовых глиноземных заводах позволило автоматизировать многие операции, что способствовало снижению расхода пара, электроэнергии, повышению производительности труда и снижению себестоимости алюминия. Однако в этом направлении можно сделать еще многое. Не отказываясь от дальнейших поисков высокосортных бокситов, переход на которые резко сократит стоимость глинозема, следует искать пути комплексного использования железистых бокситов и красных шламов в черной металлургии. В качестве примера может служить комплексное использование апатито-нефелиновых пород.
Расходы на фтористые соли составляют 8%. Снизить их можно путем тщательного отвода газов от электролитных ванн улавливания из них фтористых соединений. Анодные газы, отсасываемые из ванны, содержат до 40мг/м 3 фтора, около 100мг/м 3 смолы и 90мг/м 3 пыли (AlF3, Al2O3, Na3AlF6).
Эти газы нельзя выбрасывать в атмосферу, так как они содержат ценные вещества, кроме того, они ядовиты. Их необходимо очищать от ценной пыли, а также обезвреживать во избежание отравления атмосферы цеха и близлежащих к заводу районов. В целях очистки газы промывают слабыми растворами соды в башенных газоочистителях (скрубберах).
При совершенной организации процессов очистки и обезвреживания создается возможность вернуть в производство часть фтористых солей (до 50%) и тем самым снизить себестоимость алюминия на 3—5%.
Значительное снижение себестоимости алюминия может быть достигнуто за счет применения более дешевых источников электроэнергии и быстрого повсеместного внедрения более экономичных полупроводниковых преобразователей тока( особенно, кремниевых), а также за счет сокращения расхода электроэнергии непосредственно на электролиз. Последнее может быть достигнуто путем конструирования более совершенных ванн с меньшей потерей напряжения во всех или в отдельных их элементах, а также путем подбора более электропроводных электролитов (сопротивление криолита слишком велико и огромное количество электроэнергии переходит в избыточное тепло, которое пока невозможно рационально использовать). И не случайно, что ванны с обожженными анодами начинают находить все большее и большее применение, так как расход электроэнергии на этих ваннах значительно ниже.
Передовые бригады электролизных цехов алюминиевых заводов изучив теоретические основы процесса и особенности обслуживаемых ими ванн, тщательно наблюдая за ходом процесса, имеют возможность увеличить количество получаемого металла на единицу расходуемой электроэнергии при отличном его качестве и, следовательно, повысить эффективность производства алюминия.
Важнейшим фактором снижения себестоимости и повышения производительности труда является механизация трудоемких процессов в электролизных цехах алюминиевых заводов. В этой области на отечественных алюминиевых заводах за последние десятилетия достигнуты значительные успехи: механизировано извлечение алюминия из ванн; внедрены производительные и удобные механизмы для пробивки корки электролита и извлечения и забивки штырей. Однако нужно и можно в большей степени механизировать и автоматизировать процессы на алюминиевых заводах. Этому способствует дальнейшее увеличение мощности электролизеров, переход от периодических процессов к непрерывным.
В последние годы комплексное использование алюминиевых руд улучшилось в связи с тем, что некоторые алюминиевые заводы приступили к извлечению из отходов окислов ванадия и металлического галлия.
Галлий был открыт в 1875 г. спектральным методом. За четыре года , до этого Д. И. Менделеев с большой точностью предсказал его основные свойства (назвав экаалюминием). Галлий имеет серебристо-белый цвет и низкую температуру плавления (+30° С). Небольшой кусочек галлия может быть расплавлен на ладони.
Наряду с этим температура кипения галлия довольно высока (2230°С), поэтому его используют для высокотемпературных термо метров. Такие термометры с кварцевыми трубками применимы до 1300° С. По твердости галлий близок к свинцу. Плотность твердого галлия 5,9 г/см 3 , жидкого 6,09 г/см 3 .
Галлий рассеян в природе, богатые им минералы неизвестны. Он встречается в сотых и тысячных долях процента в алюминиевых рудах, цинковых обманках и золе некоторых углей. Смолы газовых заводов иногда содержат до 0 ,75% галлия.
По ядовитости галлий значительно превосходит ртуть и мышьяк, поэтому все работы по его извлечению следует проводить, соблюдая тщательную гигиену.
В сухом воздухе при обычных температурах галлий почти не окисляется: при нагревании он энергично соединяется с кислородом, образуя белый окисел Ga2О3. Наряду с этим окислом галлия при определенных условиях образуются и другие его окислы (GaO и Ga2О). Гидроокись галлия Ga(OH)3 амфотерна и поэтому легко растворима в кислотах и щелочах, с которыми образует галлаты, близкие по свойствам к алюминатам. В связи с этим при получении глинозема из алюминиевых руд галлий вместе с алюминием переходит в растворы в затем сопутствует ему во всех последующих операциях. Некоторая повышенная концентрация галлия наблюдается в анодном сплаве при электролитическом рафинировании алюминия, в оборотных алюминатных растворах при производстве глинозема по способу Байера и в маточных растворах, остающихся после неполной карбонизации алюминатных растворов.
Поэтому, не нарушая схемы переделов, в глиноземных и рафинировочных цехах алюминиевых заводов, можно организовать извлечение галлия. Оборотные алюминатные растворы для извлечения галлия можно периодически карбонизировать в два приема. Вначале при медленной карбонизации осаждают примерно 90% гидроокиси алюминия и отфильтровывают раствор, который затем карбонизируют повторно для того, чтобы осадить в виде гидроокисей галлий и оставшийся еще в растворе алюминий. Полученный таким путем осадок может содержать до 1,0% Ga2О3.
Значительную часть алюминия можно осадить из алюминатного маточного оборотного раствора в виде фтористых солей. Для этого в алюминатный раствор, содержащий галлий, примешивают плавиковую кислоту. При рН3AlF6). Галлий и часть алюминия остаются в растворе.
При нейтрализации кислого раствора содой до рН = 6, осаждаются галлий и алюминий.
Дальнейшего отделения алюминия от галлия можно дос тичь, обрабатывая алюминиево-галлиевые гидратные осадки в автоклаве известковым молоком, содержащим небольшое количество едкого натра; при этом галлий переходит в раствор, а основная часть алюминия остается в осадке. Затем галлий осаждают из раствора углекислым газом. Полученный осадок содержит до 25% Ga2О3.
Этот осадок растворяют в едком натре при каустическом отношении 1,7 и обрабатывают Na2S для очистки от тяжелых металлов, особенно от свинца. Очищенный и осветленный раствор подвергают электролизу при 60—75° С, напряжении 3—5 В и постоянном перемешивании электролита. Катоды и аноды должны быть сделаны из нержавеющей стали.
Известны и другие способы концентрации окиси галлия из алюминатных растворов. Так, из остающегося после электролитического рафинирования алюминия по трехслойному методу анодного сплава, содержащего 0,1—0,3% галлия, последний может быть выделен путем обработки сплава горячим раствором щелочи. При этом алюминий и галлий переходят в раствор, а медь и железо остаются в осадке.
Для получения чистых соединений галлия используют способность хлорида галлия растворяться в эфире.
Если в алюминиевых рудах присутствует ванадий, он будет постоянно накапливаться в алюминатных растворах и при содержании более 0,5 г/л V2O5 выпадать с гидратом алюминия при карбонизации в осадок и загрязнять алюминий. Для очистки от ванадия маточные растворы упаривают до плотности 1,33 г/см 3 и охлаждают до 30° С, при этом выпадает шлам, содержащий более 5% V2O5, наряду с содой и другими щелочными соединениями фосфора и мышьяка, из которых он может быть выделен сначала сложной гидрохимической переработкой, а затем электролизом водного раствора.
Расплавление алюминия из-за его большой теплоемкости и скрытой теплоты плавления (392Дж/г) требует больших расходов энергии. Поэтому заслуживает распространения опыт электролизных заводов, начавших получение ленты и катанки непосредственно из жидкого алюминия (без разливки в слитки). Кроме того, большой экономический эффект может дать получение из жидкого алюминия в литейных цехах электролизных заводов различных сплавов массового потребления, а также заготовок из них, предназначенных для обработки давлением.
Статья на тему Использование алюминиевых руд
Похожие страницы:
Галлий свойства. Почему галлий легкоплавок Предсказывая свойства галлия, Менделеев считал, что этот металл должен быть легкоплавким, поскольку его аналоги по.
Галлий применение 9 фактов Галлиевые термометры позволяют в принципе измерить температуру от 30 до 2230° С. Сейчас выпускаются галлиевые термометры.
РАЗВИТИЕ АЛЮМИНИЕВОЙ ПРОМЫШЛЕННОСТИ Свободный алюминий был впервые выделен датским физиком Эрстедом в 1825 г., но только в 1845 г. немецкому.
Содержание статьи1 Галлий история открытия элемента1.1 Как был открыт галлий1.2 Галлий и Менделеев Галлий история открытия элемента Об элементе с.
Содержание статьи1 ГАЛЛИЙ анализ Ga, AM 69,72 Качественная реакция на галлий1.1 5,7-Дибром-8-оксихинолин (ДБО)1.2 Люмогаллион1.3 Родамин С(В) ГАЛЛИЙ анализ Ga, AM.
Содержание статьи1 Получение глинозема1.1 Электротермические способы получение глинозема1.2 Кислотные способы получение глинозема1.3 Щелочные способы получение глинозема Получение глинозема Согласно ГОСТ 6912—64 глинозем.
Источник