Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
Алюминий сплавы и марки труба, лента, проволока, лист, круг Алюминий сплавы и марки
Алюминий для раскисления | ||||
АВ86 | АВ86Ф | АВ88 | АВ88Ф | АВ91 |
АВ91Ф | АВ92 | АВ92Ф | АВ97 | АВ97Ф |
Алюминиевый деформируемый сплав | ||||
1201 | 1420 | АВ | АД31 | АД33 |
АД35 | АК4 | АК4-1 | АК6 | АК8 |
АМг1 | АМг2 | АМг3 | АМг3С | АМг4 |
АМг4.5 | АМг5 | АМг5П | АМг6 | АМц |
АМцС | АЦпл | В65 | В93 | В94 |
В95 | В95П | В96 | В96ц | В96Ц1 |
ВД17 | Д1 | Д12 | Д16 | Д16П |
Д18 | Д19 | Д1П | Д20 | Д21 |
ММ |
Химия 9 класс: Алюминий
Алюминиевый антифрикционный сплав | ||||
АМСТ | АН-2.5 | АО20-1 | АО3-1 | АО3-7 |
АО6-1 | АО9-1 | АО9-2 | АО9-2Б | АСМ |
Свойства и полезная информация:
Описание алюминия: Алюминий не имеет полиморфных превращений, обладает решеткой гранецентрированного куба с периодом а=0,4041 нм. Алюминий и его сплавы хорошо поддаются горячей и холодной деформации — прокатке, ковке, прессованию, волочению, гибке, листовой штамповке и другим операциям.
Все алюминиевые сплавы можно соединять точечной сваркой, а специальные сплавы можно сваривать плавлением и другими видами сварки. Деформируемые алюминиевые сплавы разделяются на упрочняемые и неупрочняемые термической обработкой.
Все свойства сплавов определяют не только способом получения полуфабриката заготовки и термической обработкой, но главным образом химическим составом и особенно природой фаз — упрочнителей каждого сплава. Свойства стареющих алюминиевых сплавов зависят от видов старения: зонного, фазового или коагуляционного.
На стадии коагуляционного старения (Т2 и ТЗ) значительно повышается коррозионная стойкость, причем обеспечивается наиболее оптимальное сочетание характеристик прочности, сопротивления коррозии под напряжением, расслаивающей коррозии, вязкости разрушения (К1с) и пластичности (особенно в высотном направлении).
Состояние полуфабрикатов, характер плакировки и направление вырезки образцов обозначены следующим образом — Условные обозначения проката из алюминия:
Цинковые и алюминиевые сплавы Как отличить цинк силумин дюраль
М — Мягкий, отожженный
Т — Закаленный и естественно состаренный
Т1 — Закаленный и искусственно состаренный
Т2 — Закаленный и искусственно состаренный по режиму, обеспечивающему более высокие значения вязкости разрушения и лучшее сопротивление коррозии под напряжением
ТЗ — Закаленный и искусственно состаренный по режиму, обеспечивающему наиболее высокие сопротивления коррозии под напряжением и вязкость разрушения
Н — Нагартованный (нагартовка листов сплавов типа дуралюмии примерно 5—7 %)
H1 — Усиленно нагартованный (нагартовка листов примерно 20 %)
ТПП — Закаленный и естественно состаренный, повышенной прочности
ГК — Горячекатаные (листы, плиты)
Б — Технологическая плакировка
А — Нормальная плакировка
УП — Утолщенная плакировка (8 % на сторону)
Д — Продольное направление (вдоль волокна)
П — Поперечное направление
В — Высотное направление (толщина)
X — Хордовое направление
Р — Радиальное направление
ПД, ДП, ВД, ВП, ХР, РХ — Направление вырезки образцов, применяемое для определения вязкости разрушения и скорости роста усталостной трещины. Первая буква характеризует направление оси образца, вторая — направление плоскости, например: ПВ — ось образца совпадает с шириной полуфабриката, а плоскость трещины параллельна высоте или толщине.
Анализ и получение проб алюминия: Руды. В настоящее время алюминий получают только из одного вида руды — бокситов. В обычно используемых бокситах содержится 50—60% А12О3, 2О3, несколько процентов SiО2, ТiО2, иногда несколько процентов СаО и ряд других окислов.
Пробы от бокситов отбирают по общим правилам, обращая особое внимание на возможность поглощения влаги материалом, а также на различное соотношение долей крупных и мелких частиц. Масса пробы зависит от величины опробуемой поставки: от каждых 20 т необходимо отбирать в общую пробу не менее 5 кг.
При отборе проб боксита в конусообразных штабелях от всех крупных кусков массой >2 кг, лежащих в окружности радиусом 1 м, откалывают маленькие кусочки и отбирают в лопату. Недостающий объем заполняют мелкими частицами материала, взятыми с боковой поверхности опробуемого конуса.
Отобранный материал собирают в плотно закрывающиеся сосуды.
Дальнейшую подготовку пробы для анализа проводят после высушивания при 105° С. Размер частиц пробы для анализа должен быть менее 0,09 мм, количество материала 50 кг.
Приготовленные пробы боксита очень склонны к расслоению. Если пробы, состоящие из частиц размером Отбор проб от криолита и фторида алюминия не представляет особых трудностей. Материал, поставляемый в мешках и имеющий однородный состав, опробуют с помощью щупа, причем подпробы отбирают от каждого пятого или десятого мешка.
Объединенные подпробы измельчают до тех пор, пока они не будут проходить через сито с размером отверстий 1 мм, и сокращают до массы 1 кг. Этот сокращенный материал пробы измельчают, пока он не будет полностью проходить через сито с размером отверстий 0,25 мм. Затем отбирают пробу для анализа и дробят до получения частиц размером 0,09 мм.
Пробы от жидких расплавов фторидов, применяемых при электролизе расплава алюминия в качестве электролитов, отбирают стальным черпаком из жидкого расплава после удаления твердой настыли с поверхности ванны. Жидкую пробу расплава сливают в изложницу и получают маленький слиточек размерами 150х25х25 мм; затем всю пробу измельчают до размера частиц лабораторной пробы менее 0,09 мм . читать дальше >>>
Плавка алюминия: В зависимости от масштабов производства, характера литья и энергетических возможностей плавку алюминиевых сплавов можно производить в тигельных печах, в электропечах сопротивления и в индукционных электропечах.
Плавка алюминиевых сплавов должна обеспечивать не только высокое качество готового сплава, но и высокую производительность агрегатов и, кроме того, минимальную стоимость литья.
Наиболее прогрессивным методом плавки алюминиевых сплавов является метод индукционного нагрева токами промышленной частоты.
Технология приготовления алюминиевых сплавов слагается из тех же технологических этапов, что и технология приготовления сплавов на основе любых других металлов.
Загрузка шихты при плавке алюминиевых сплавов производится в следующем порядке.
1. При проведении плавки на свежих чушковых металлах и лигатурах в первую очередь загружают (полностью или по частям) алюминий, а затем растворяют лигатуры.
2. При проведении плавки с использованием в шихте предварительного чушкового сплава или чушкового силумина в первую очередь загружают и расплавляют чушковые сплавы, а затем добавляют необходимое количество алюминия и лигатур.
3. В том случае, когда шихта составлена из отходов и чушковых металлов, ее загружают в следующей последовательности: чушковый первичный алюминий, бракованные отливки (слитки), отходы (первого сорта) и рафинированный переплав и лигатуры.
Медь можно вводить в расплав не только в виде лигатуры, но и в виде электролитической меди или отходов (введение путем растворения).
Краткие обозначения: | ||||
σв | — временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | — относительная осадка при появлении первой трещины, % | |
σ0,05 | — предел упругости, МПа | Jк | — предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | — предел текучести условный, МПа | σизг | — предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | — относительное удлинение после разрыва, % | σ-1 | — предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | — предел текучести при сжатии, МПа | J-1 | — предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | — относительный сдвиг, % | n | — количество циклов нагружения | |
s в | — предел кратковременной прочности, МПа | R и ρ | — удельное электросопротивление, Ом·м | |
ψ | — относительное сужение, % | E | — модуль упругости нормальный, ГПа | |
KCU и KCV | — ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 | T | — температура, при которой получены свойства, Град | |
s T | — предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | — коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | — твердость по Бринеллю | C | — удельная теплоемкость материала (диапазон 20 o — T ), [Дж/(кг·град)] | |
HV | — твердость по Виккерсу | pn и r | — плотность кг/м 3 | |
HRCэ | — твердость по Роквеллу, шкала С | а | — коэффициент температурного (линейного) расширения (диапазон 20 o — T ), 1/°С | |
HRB | — твердость по Роквеллу, шкала В | σ t Т | — предел длительной прочности, МПа | |
HSD | — твердость по Шору | G | — модуль упругости при сдвиге кручением, ГПа |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Источник: metallicheckiy-portal.ru
Марки алюминия
В современном мире алюминию отведено важное место. Металл, открытый всего 1,5 века назад используется в промышленных, военных и потребительских целях. Сплавы на основе алюминия применяют для изготовления легких конструкций, в качестве проводников тока, пищевой упаковки, отделочного материала.
Химический элемент обладает хорошими восстановительными качествами и используется в металлургии для раскисления стали. Легирование алюминием снижает склонность к полиморфному распаду у титановых сплавов. Рассмотрим как получают алюминий и как расшифровываются обозначения марок.
Одно из названий: “серебро из глины” — указывает на технологию выплавки. В естественной среде металл в чистом виде не встречается, так как обладает высокой химической активностью. Оксид Al₂О₃ — основная составляющая глинозема, входит в состав таких природных минералов как рубин, сапфир, изумруд и др.
Из-за высокого сродства с кислородом восстановление углеродом, как при выплавке стали невозможно. Современная технология была разработана в 1886 году, она состоит из нескольких этапов:
- Производство боксита (руды): глинозем дробят, сушат, обрабатывают паром для удаления примесей;
- Растворение оксида Al₂О₃ в расплаве криолита Na₃AIF₆ при 950 С⁰;
- Электролиз расплава при котором разрывается связь с кислородом.
Для очистки от примесей применяют различные способы:
Для придания дополнительных свойств сплав легируют титаном, цинком, марганцем, хромом, никелем и другими элементами. В зависимости от содержания чистого металла, примесей и легирующих элементов, состав маркируется согласно ГОСТ 4784-97.
Классификация марок алюминия
Первичный алюминий производят по ГОСТ 11069-2001 или ГОСТ Р 55375-2012. Показатель чистоты определяет физические и химические свойства, при которых применение металла оправдано в отдельных отраслях промышленности.
- Особая: 99,999% — обозначение А999. Для изготовления полупроводников и лабораторных работ;
- Высокая: 99,95 -99,995% — марки А95, А97, А99, А995. Производство деталей радио и электрооборудования;
- Техническая: 99-99,85% — А0, А5, А6, А7, А8, А85. Для проводов, прокладок и приготовления сплавов.
Обозначения марок отражают только сотые доли процентов содержания чистого металла, так как оно всегда выше 99%. Технический алюминий используют в разных целях, в том числе для изготовления упаковки и посуды. Для описания качеств применяют следующие термины:
Деформируемый алюминий обозначают аббревиатурой АД, например: АД000, АД00. Буква Е выражает заданные электрические характеристики, АД1пл — материал, предназначенный для плакировки тонколистового проката. Наряду с этими маркировками применяют цифровые: АД0 соответствует 1011, АД1 — 1013.
Таблица основных марок алюминия и сплавов
Алюминий первичный | |||||
А0 | А5 | А5Е | А6 | А7 | |
А7Е | А8 | А85 | А95 | А97 | |
А99 | А995 | А999 | |||
Алюминий технический | |||||
АД | АД0 | АД00 | АД000 | АД00Е | |
АД0Е | АД1 | АДоч | АДС | АДч | |
Алюминий для раскисления | |||||
АВ86 | АВ86Ф | АВ88 | АВ88Ф | АВ91 | |
АВ91Ф | АВ92 | АВ92Ф | АВ97 | АВ97Ф | |
Алюминий литейный | |||||
АК21М2.5Н2.5 | АК4М4 | АК5М2 | АК5М7 | АК7 | |
АК7М2 | АК9 | АЛ1 | АЛ11 | АЛ13 | |
АЛ19 | АЛ2 | АЛ21 | АЛ22 | АЛ23 | |
АЛ23-1 | АЛ24 | АЛ25 | АЛ26 | АЛ27 | |
АЛ27-1 | АЛ28 | АЛ29 | АЛ3 | АЛ30 | |
АЛ32 | АЛ33 | АЛ34 | АЛ4 | АЛ4-1 | |
АЛ4М | АЛ5 | АЛ5-1 | АЛ6 | АЛ7 | |
АЛ7-4 | АЛ8 | АЛ9 | АЛ9-1 | В124 | |
В2616 | ВАЛ10 | ВАЛ10М | ВАЛ11 | ВАЛ12 | |
ВАЛ8 | |||||
Алюминиевый деформируемый сплав | |||||
1201 | 1420 | АВ | АД31 | АД33 | |
АД35 | АК4 | АК4-1 | АК6 | АК8 | |
АМг1 | АМг2 | АМг3 | АМг3С | АМг4 | |
АМг4.5 | АМг5 | АМг5П | АМг6 | АМц | |
АМцС | АЦпл | В65 | В93 | В94 | |
В95 | В95П | В96 | В96ц | В96Ц1 | |
ВД17 | Д1 | Д12 | Д16 | Д16П | |
Д18 | Д19 | Д1П | Д20 | Д21 | |
ММ | |||||
Алюминиевый антифрикционный сплав | |||||
АМСТ | АН-2.52 | АО20-1 | АО3-12 | АО3-7 | |
АО6-1 | АО9-1 | АО9-2 | АО9-2Б | АСМ |
Марки листов алюминия
Производство листового проката регламентирует ГОСТ 21631-76. Листы производят из марок А0, А5, А6, А7, АД0, АД1 и сплавов с магнием, марганцем, цинком. Для решения ряда технологических задач у алюминия достаточно пластичности, но порой не хватает механических характеристик. Для улучшения качеств применяют методы:
Поиск металлопроката
без посредников Всегда актуальное наличие, проверенные
поставщики, удобные фильтры и сортировка
734 металлобазы
5648 пользователей
3МЛН+ позиций товара
- Плакирование: напыление металлического слоя, по толщине оно может быть технологическим (Б), нормальным (А), утолщенным (У);
- Нагартовка: упорядоченное нанесение микродефектов, которые формируют уплотнения. По степени обработки листы бывают нагартованными (Н) и полунагартованными (Н2);
- Термически обработанные: применяют упрочняющий отжиг и закаливание.
Закаленные полуфабрикаты подвергают старению. После нагрева в печи изделия находятся в неподвижном состоянии, в это время происходят изменения кристаллической решетки, связанные с выпадением избыточной фазы. Пресыщенные легирующими элементами кристаллы выделяют отдельные атомы, которые концентрируются на границах зерен. Частицы, образованные таким образом упрочняют сплав. Старение может быть естественным (при комнатной температуре) или искусственным (при специально поддерживаемой температуре до 100-150 С⁰).
Произведенная обработка обозначается следующим образом:
- М — отожженные полуфабрикаты или соответствующие им по механическим параметрам;
- Т — закаленные и состаренные естественным способом;
- Т1 — закаленные и состаренные искусственно;
- ТН — нагартованные после закалки и естественного старения.
Отделка поверхности может быть обычной, повышенной (П) и высокой (В). Эти буквы ставят в конце маркировки; “П” указанная в геометрических параметрах 1000Пх2000. означает повышенную точность.
- А5 М 1,5х1000х2500 — отожженный лист толщиной 1,5 мм.;
- АД1Н 2,0х1200х3000 — нагартованный деформируемый;
- Д16АТ 5,0х1200х3000 — лист из дюралюминия Д16 с нормальным плакированием (А), закаленный и состаренный в естественных условиях (Т).
Алюминиевый листовой прокат применяют в строительстве, автомобилестроении, для изготовления штампованных деталей и производства фольги.
Маркировка алюминия
В стандарте ГОСТ 4784-97 представлена классификация в виде 9 таблиц, в которых одновременно используется буквенная и числовая система. Можно заметить, что марки АД присутствуют в нескольких таблицах, так как это материалы с разными системами, в то же время ряд сплавов обозначается с помощью химического состава. Как расшифровать эту классификацию?
- А — техническое сырье;
- АД — деформируемый сплав;
- Д — дюраль;
- АВ — авиаль, но к ним относят АВ, АД31, АД35;
- В — высокопрочный;
- АМ — с медью;
- АМг — с магнием;
- АК — с кремнием;
- САП — спеченные порошки;
- САС — спеченные сплавы;
- СИЛ — силумины;
- Св — для сварочной проволоки.
Следует отметить, что силумины — это сплавы, легированные кремнием, их маркировки могут выглядеть как СИЛ1, СИЛ2 и одновременно АК9, АК10М2Н. Дюрали — собирательное название группы высокопрочных (В) материалов, их маркируют: Д16, Д18, В65, ВАД1.
- 1000-1018 — технический металл;
- 1020-1025 — пеноалюминий;
- 1019, 1029, 1039 и т.д. — САП;
- 1100-1190 — основа Al-Cu-Mg;
- 1200-1290 — Al-Cu-Mn;
- 1300-1390 Al-Mg-Si;
- 1319, 1329, 1339 и т.д — САС;
- 1400-1419 Al-Mn и Al-Be-Mg;
- 1420-1490 Al-Li;
- 1500-1590 Al-Mg;
- 1900-1990 Al-Zn-Mg.
Марка | Группа сплавов, основная система легирования |
1000-1018 | Технический алюминий |
1019, 1029 и т. д. | Порошковые сплавы |
1020-1025 | Пеноалюминий |
1100-1190 | Al-Cu-Mg, Al-Cu-Mg-Fe-Ni |
1200-1290 | Al-Cu-Mn, Al-Cu-Li-Mn-Cd |
1300-1390 | Al-Mg-Si, Al-Mg-Si-Cu |
1319, 1329 и т. д. | Al-Si, порошковые сплавы САС |
1400-1419 | Al-Mn, Al-Be-Mg |
1420-1490 | Al-Li |
1500-1590 | Al-Mg |
1900-1990 | Al-Zn-Mg, Al-Zn-Mg-Cu |
Литейные сплавы представлены в ГОСТ 1583-93, некоторые составы имеют два варианта обозначения. Маркировка АЛ устарела, но все еще встречается в технической документации. Всего создано около 600 алюминиевых сплавов, примерно 400 относится к деформируемым, около 200 — к литейным. Все сплавы сгруппированы по характеристикам или основным легирующим элементам.
Источник: e-metall.ru
Алюминий и его свойства
Алюминий — пластичный и лёгкий металл, имеющий бело-серебристый цвет. Он нашёл широкое применение во всех отраслях промышленности. Особенностью алюминия является образование на его поверхности при контакте с воздушной средой оксидной плёнки, покрывающей внешние плоскости изделия и защищающие его от воздействия внешней среды. В периодической системе химических элементов этот металл обозначен символом Al, среди других металлов ІІІ группы ему присвоен номер 13, атомная масса алюминия составляет 26,98154.
Широкий спектр применения этого металла объясняется его уникальными свойствами, а объёмы использования алюминия в производственных целях только возрастают, уступая первое место железу. Будучи пластичным, лёгким и ковким, алюминий в готовом изделии способен принять и долгое время держать любую форму, а оксидная плёнка защищает его от коррозийных проявлений. Срок службы алюминиевых изделий нередко составляет несколько десятков лет. В отрасли машиностроения и энергетики алюминий пользуется большой популярностью благодаря своим свойствам электропроводности, лёгкости при переработке, а также отсутствию токсичных выделений.
Алюминий играет важную роль в формировании экономик многих стран, так как он крайне необходим для потребностей автомобильной промышленности, при строительстве железнодорожного транспорта, морских судов и космических аппаратов. В линиях электропередач алюминий используется чаще, чем медные сплавы.
Способы получения алюминия
Алюминий в виде оксидов распространён широко, он часто встречается в залежах горных пород, находясь на 4-м месте среди всех добываемых природных ископаемых. Стоит отметить, что 8,8% поверхности земной коры планеты состоит из этого удивительного вещества. Однако, этот металл не встречается и не добывается в своём чистом виде.
Его источниками выступают бокситы, 90% которых сосредоточены на территории стран с тропическим климатом. Кроме того, чтобы добывать алюминий используют нефелиновые руды, месторождения которых находятся на Кольском полуострове и территории Кемеровской области. Нефелиновая руда, кроме алюминия, богата кальцинированной содой, поташем, цементом и различными веществами, используемыми в качестве удобрений.
Процесс добычи алюминия можно описать следующим образом: из обогащённой массы добытой нефелиновой руды путём химических реакций извлекается оксид алюминия, внешне он напоминает белый мелкий песок или муку. С помощью реакции электролиза из полученного вещества и выделяют тот самый серебристый алюминий, используемый в промышленности. Процесс представляется значительно энергоёмким, а полученные материалы имеют высокую себестоимость.
В наши дни объёмы добычи алюминия достигли 24 миллионов тонн ежегодно.
Несколько слов об истории освоения алюминия
Первым упоминанием об этом металле является описание Плиния Старшего (1-й век нашей эры) легенды о том, как императору Тиберию преподнесли в дар необычный и лёгкий кубок для вина, выполненный из белого металла. После того, как даритель сообщил императору, что источником получения этого металла стала обычная глина, то был казнён, как осмелившийся одарить правителя изделием низкого сорта. На самом деле целью казни была попытка предотвратить обесценивание других металлов, так как доступность добычи алюминия могла подорвать экономические основы древних государств.
Достоверно установлено, что в 16-м веке окись алюминия была выделена из «квасцовой земли». Этот эксперимент был успешно повторён в 17-м веке немецким химиком Андреасом Маргграфом, который и дал выделенному им веществу название «alumina» (от латинского — вязкий, связывающий). Алюминий не получил в те времена широкого распространения из-за того, что не добывался в чистом виде. Но уже в 1855 году алюминий, названный «серебро из глины», начинает применяться для создания украшений и столовых приборов. Относительно дешёвые способы добычи алюминия были разработаны только в середине 19-го века, когда предложенные американскими и французскими учёными реакции электролиза расплавленного криолита позволили выделить этот металл.
Единственным недостатком алюминия является его недостаточная в сравнении с большинством иных металлов прочность. Однако в состав алюминиевого сплава стали добавлять незначительное количество меди, магния и марганца, так был открыт способ производства дюралюминия. Добавление иных элементов позволило не только укрепить сплав, но и с течением времени делает его всё прочнее и прочнее. В 1919 году из дюралюминия был построен
Источник: metalloobrabotka-zakazat.ru