конструкций, определяется ее механическими свойствами: сопротивлением статическим воздействиям, динамическим воздействиям и хрупкому разрушению при различных температурах; показателями пластичности – относительным удлинением; сопротивлением расслоению – загибом в холодном состоянии. Значения этих показателей устанавливаются ГОСТ. Кроме того, качество стали определяется ее свариваемостью, которая гарантируется соответствующим химическим составом стали и технологией ее производства.
По прочности стали делятся на три группы:
- малоуглеродистые стали (обыкновенного качества)
- стали повышенной прочности
- стали высокой прочности
Механические свойства стали и ее свариваемость зависят от химического состава, термической обработки и технологии прокатки.
Основу стали составляет феррит. Феррит имеет малую прочность, очень пластичен, поэтому в чистом виде в строительных конструкциях не применяется. Прочность его повышают добавками углерода – малоуглеродистые стали обычной прочности; легированием марганцем, кремнием, ванадием, хромом и другими элементами – низколегированные стали повышенной прочности; легированием и термическим упрочнением стали высокой прочности.
Боль Российских Машиностроителей / Высокопрочная сталь и ее качество
Основные химические элементы, применяемые при легировании малоуглеродистой стали, стали повышенной и высокой прочности.
Углеродистая сталь обыкновенного качества состоит из железа и углерода с некоторой добавкой кремния или алюминия, марганца, меди.
Углерод (У), повышая прочность стали, снижает пластичность и ухудшает ее свариваемость; поэтому в строительных сталях, которые должны быть достаточно пластичными и хорошо свариваемыми, углерод допускается в количестве не более 0,22 %.
Кремний (С), находясь в твердом растворе с ферритом, повышает прочность стали, но ухудшает ее свариваемость и стойкость против коррозии. В малоуглеродистых сталях кремний применяется как хороший раскислитель; в этом случае кремний в малоуглеродистых сталях добавляется в пределах до 0,3 %, в низколегированных сталях до 1 %.
Алюминий (Ю) входит в сталь в виде твердого раствора феррита и в виде различных нитридов и карбидов, хорошо раскисляет сталь, нейтрализует вредное влияние фосфора, повышает ударную вязкость.
Марганец (Г) растворяется как в феррите, так и в цементите; образует тугоплавкие карбиды, что приводит к повышению прочности и вязкости стали. Марганец служит хорошим раскислителем, а соединяясь с серой, снижает вредное ее влияние. В малоуглеродистых сталях марганца содержится до 0,64 %, а в легированных – до 1,5 %; при содержании марганца более 1,5 % сталь становится хрупкой.
Повышение механических свойств низколегированной стали осуществляется присадкой металлов, вступающих в соединение с углеродом и образующих карбиды, а также способных растворяться в феррите и замещать атомы железа. Такими легирующими металлами являются марганец (Мn), хром (Х), ванадий (Ф), вольфрам (В), молибден (М), титан (Т). Прочность низколегированных сталей также повышается при введении никеля, меди, кремния и алюминия, которые входят в сталь в виде твердых растворов (феррита).
РАСШИФРОВКА СТАЛЕЙ | РАСШИФРОВКА МАРОК СТАЛИ [МАТЧАСТЬ]
Вольфрам и молибден, значительно повышая твердость, снижают пластические свойства стали: никель повышает прочность стали и пластические ее свойства.
Молибден (М) и бор (Р) обеспечивает высокую устойчивость аустенита при охлаждении и тем самым облегчает получение закалочных структур (так называемых бейнита и мартенсита), что очень важно для получения высокопрочного проката больших толщин. После закалки и высокого отпуска (улучшения) сталь становится мелкозернистой, насыщенной карбидами; такая сталь обладает высокой прочностью, удовлетворительной пластичностью и почти не разупрочняется при сварке.
Азот (А) в несвязанном состоянии способствует старению стали и делает ее хрупкой, особенно при низких температурах. Поэтому его не должно быть более 0,008 %. В химически связанном состоянии с алюминием, ванадием, титаном или ниобием азот, образуя нитриды, становится легирующим элементом, способствующим измельчению структуры и улучшению механических свойств; однако ударная вязкость стали при низких температурах получается низкой. Увеличение сопротивления стали хрупкому разрушению обеспечивается простейшей термической обработкой – нормализацией.
Вредные примеси
Вредное влияние на механические свойства стали оказывает насыщение ее газами, которые могут попасть из атмосферы в металл, находящийся в расплавленном состоянии. Кислород действует подобно сере, но в более сильной степени и повышает хрупкость стали. Несвязанный азот также снижает качество стали. Водород хотя и удерживается в незначительном количестве (0,0007 %), но концентрируясь около включений в межкристаллических областях и располагаясь преимущественно по границам блоков, вызывает в микрообъемах высокие напряжения, что приводит к снижению сопротивления стали, хрупкому разрушению, снижению временного сопротивления и пластических свойств стали. Поэтому расплавленную сталь (например при сварке) необходимо защищать от воздействия атмосферы.
Термическая обработка
Значительного повышения прочности, деформационных и других свойств стали помимо легирования достигают термической обработкой благодаря тому, что под влиянием температуры, а также режима нагрева и охлаждения изменяются структура, величина зерна и растворимость легирующих элементов стали.
Простейшим видом термической обработки является нормализация. Она заключается в повторном нагреве проката до температуры образования аустенита и последующего охлаждения на воздухе. После нормализации структура стали получается более упорядоченной, снимаются внутренние напряжения, что приводит к улучшению прочностных и пластических свойств стального проката и его ударной вязкости. Поэтому нормализация, являясь простейшим видом термического улучшения стали, применяется довольно часто.
При быстром остывании стали, нагретой до температуры, превосходящей температуру фазового превращения, получается закалка. Для закалки необходимо, чтобы скорость остывания была выше скорости превращения фаз.
Структуры, образующиеся после закалки, придают стали высокую прочность. Однако пластичность ее снижается, а склонность к хрупкому разрушению повышается. Для регулирования механических свойств закаленной стали и образования желаемой структуры производится ее отпуск, т. е. нагрев до температуры, при которой происходят желательное структурное превращение, выдержка при этой температуре в течении необходимого времени и затем медленное остывание.
- механические воздействия и особенно развитие пластических деформаций (механическое старение);
- температурные колебания, приводящие к изменению растворимости и скорости диффузии компонентов и потому к их выделению (физико – химическое старение, дисперсионное твердение). Невысоким нагревом (до 150 – 200 С) можно резко усилить процесс старения.
При пластическом деформировании и последующем небольшом нагреве интенсивность старения резко повышается (искусственное старение). Поскольку старение понижает сопротивление динамическим воздействиям и хрупкому разрушению, оно рассматривается как явление отрицательное. Наиболее подвержены старению стали, загрязненные и насыщенные газами, например кипящая сталь.
Нераскисленные стали кипят при разливке в изложницы вследствие выделения газов; такая сталь носит название кипящей и оказывается более засоренной газами и менее однородной.
Кипящие стали, имея достаточно хорошие показатели по пределу текучести и временному сопротивлению, плохо сопротивляются хрупкому разрушению и старению.
Чтобы повысить качество малоуглеродистой стали, ее раскисляют добавками кремния от 0,12 до 0,3 % или алюминия до 0,1 %; кремний (или алюминий), соединяясь с растворенным кислородом, уменьшает его вредное влияние. При соединении с кислородом раскислители образуют в мелкодисперсной фазе силикаты и алюминаты, которые увеличивают число очагов кристаллизации и способствуют образованию мелкозернистой структуры стали, что ведет к повышению ее качества и механических свойств. Раскисленные стали не кипят при разливке в изложницы, поэтому их называют спокойными.
Спокойная сталь более однородна, лучше сваривается, лучше сопротивляется динамическим воздействиям и хрупкому разрушению. Спокойные стали применяют при изготовлении ответственных конструкций, подвергающихся статическим и динамическим воздействиям.
Полуспокойная сталь по качеству является промежуточной между кипящей и спокойной. Она раскисляется меньшим количеством кремния – в размере 0,05 – 0,15 % (редко алюминием).
Малоуглеродистые стали обыкновенного качества
Из группы малоуглеродистых сталей обыкновенного качества, производимых металлургической промышленностью по ГОСТ 380 – 88, широкое применение в строительстве находит сталь марки Ст3.
Сталь марки Ст3 производится кипящей (СТ3кп), полуспокойной (Ст3пс) и спокойной (Ст3сп).
В зависимости от назначения сталь поставляется по следующим трем группам, которые обозначают, по каким свойствам нормируется сталь:
А — по механическим свойствам;
Б — по химическому составу;
В — по механическим свойствам и химическому составу
Поскольку для несущих строительных конструкций необходимо обеспечить прочность и свариваемость, а также надлежащее сопротивление хрупкому разрушению и динамическим воздействиям, сталь для этих конструкций заказывается по группе В, т. е. с гарантией механических свойств и химического состава.
Сталь марки Ст3 содержит углерода 0,14 – 0,22 %.
Согласно ГОСТ 380 – 88, маркировка стали производится так: вначале ставится соответствующее буквенное обозначение группы стали, затем марка, далее способ раскисления и в конце категория; например, сталь группы В (поставляемой по механическим свойствам и химическому составу) марки Ст3 полуспокойная, категории 5 имеет обозначение ВСт3пс5.
Категория обозначает, какие механические св-ва стали сохраняются при температуре -20 и +20 градусов Цельсия. Стали обыкновенного качества делятся на 5 категорий. Таблица нормируемых показателей по категориям приведена в ГОСТ 535-88.
Стали повышенной и высокой прочности
Для многих видов конструкций применяются стали повышенной и высокой прочности.
Стали повышенной и высокой прочности поставляются по ГОСТ 19281 – 89 и ГОСТ 19282 – 89. В зависимости от нормируемых свойств (химического состава, временного сопротивления, предела текучести, ударной вязкости при разных температурах и после механического старения) согласно ГОСТ эти стали подразделяют на 15 категорий с гарантией механических св-в при температурах от -70, до +20 градусов Цельсия.
Применение стали повышенной прочности приводит к экономии металла до 20 – 25 %, а высокой прочности – 25 – 50 % по сравнению с обычной углеродистой сталью.
ГОСТ 27772-88
С 1988 г. Был введен ГОСТ на прокат для строительных стальных конструкций. В этом ГОСТе маркам сталей обыкновенного качества, повышенной и высокой прочности даны новые наименования, например С245, С390, С590К. Буква С означает – сталь строительная, цифры условно обозначают предел текучести проката (физические св-ва стали), буква К вариант химического состава. По данному ГОСТ стали делят на 4 категории с гарантией механических св-в при температуре -40, -70 градусов и после механического старения.
Сталь — Общие сведения
Сталь — широко известный сплав железа с углеродом. Энциклопедическое определение — деформируемый (ковкий) сплав железа с с углеродом (до 2%) и другими элементами. Важнейший материал, продукт черной металлургии. Является материальной основой практически всех отраслей промышленности. Масштабы производства стали в значительной степени характеризуют технико-экономический уровень развития государства.
История развития технологий получения стали.
Сыродутный процесс — самый древний способ получения стали в горнах, в основе которого — восстановление железа из руды древесным углем. Полученная тестообразная масса подвергалась дальнейшей обработке. Позднее этот способ стали применять в небольших шахтных печах.
Тигельная плавка — расплавление мелких кусков стали и чугуна в огнеупорных тиглях. Сталь, полученная таким образом, характеризовалась высоким качеством. Сам же процесс тигельной плавки являлся дорогим и малопроизводительным. Таким способом изготовляли, например, дамасскую сталь.
Кричный передел — рафинирование предварительно полученного чугуна в кричном горне. Способ изобретен в средние века и несколько столетий оставался ремесленной технологией.
Пудлингование — двухступенчатый процесс, при котором, как и при кричном переделе, исходным материалом был чугун, а продуктом — тестообразный металл (крица). Качество металла при этом было выше, а сам процесс характеризовался более высокой производительностью. Технология развивалась с XVIII века и сыграла важную роль в развитии техники, однако обеспечить всё возраставшие потребности общества не могла.
Мартеновский процесс — технология массового производства литой стали в мартеновских печах. Разработана во второй половине XIX века (также как бессемеровский процесс, а затем томасовский процесс). Сыграла важную роль в научно-техническом и экономическом развитии общества. Почти столетие с помощью мартеновского процесса производилось до 80% выплавляемой стали во всем мире.
Электросталеплавильное производство — выплавка стали в электрических печах. Технология начала применяться в конце XIX века, но заметной конкуренции мартеновским печам не составила.
Кислородно-конвертерный процесс — относительно новая технология (с 50-х годов XX века), активно развивающаяся и заменяющая мартеновский процесс.
Современные технологии — в последние десятилетия активно развиваются более дорогие и менее производительные способы, позволяющие получать особо чистый металл высокого качества: вакуумная дуговая плавка, вакуумная индукционная плавка, электрошлаковый переплав, электроннолучевая плавка, плазменная плавка.
Структура и свойства стали.
Основной компонент стали — железо. Свойственный железу полиморфизм, то есть способность кристаллической решётки менять своё строение при нагреве и охлаждении, присущ и стали. Для чистого железа известны 2 кристаллические решётки — кубическая объёмноцентрированная (a-железо, при более высоких температурах d-железо) и кубическая гранецентрированная (g-железо).
Температуры перехода одной модификации железа в другую (910 °С и 1400 °С) называются критическими точками. Углерод и др. компоненты и примеси С. меняют положение критических точек на температурной шкале. Взаимодействие углерода с модификациями железа приводит к образованию т. н. твёрдых растворов.
Растворимость углерода в a-железе весьма мала; этот раствор называется ферритом. В g-железе, существующем при высоких температурах, растворяется практически весь углерод, содержащийся в С. (предел растворимости углерода в g-железе 2,01%); образующийся раствор называется аустенитом. Содержание углерода в С. всегда превышает его растворимость в a-железе; избыточный углерод образует с железом химическое соединение — карбид железа Fe3C, или цементит. Т. о., при комнатной температуре структура С. состоит из частиц феррита и цементита, присутствующих либо в виде отдельных включений (т. н. структурно-свободных феррита и цементита), либо в виде тонкой механической смеси, называемой перлитом.
Для феррита характерны относительно низкие прочность и твёрдость, но высокие пластичность и ударная вязкость. Цементит хрупок, но весьма твёрд и прочен. Перлит обладает ценным сочетанием прочности, твёрдости, пластичности и вязкости.
Диапазон свойств сталей расширяется с помощью легирования, а также термической обработки, химико-термической обработки, термомеханической обработки металла. Так, при закалке стали образуется метастабильная фаза мартенсит — пересыщенный твёрдый раствор углерода в a-железе, характеризующийся высокой твёрдостью, но и большой хрупкостью; сочетая закалку с отпуском, можно придать стали требуемое сочетание твёрдости и пластичности.
На сегодняшний день существует большое число различных марок сталей, отличающихся по химическому составу, структуре, свойствам и физическим характеристикам.
Классификация сталей.
По типу сталеплавильного агрегата (кислородный конвертер, мартеновская печь, электрическая дуговая печь) сталь называется кислородно-конвертерной, мартеновской или электросталью. Кроме того, различают металл, выплавленный в основной или кислой (по характеру футеровки) печи; сталь при этом называется соответственно основной или кислой (например, кислая мартеновская сталь). В современной металлургии стали выплавляют главным образом из чугуна и стального лома.
По химическому составу стали делятся на углеродистые и легированные. Углеродистая сталь наряду с Fe и С содержит Mn (0,1—1,0%) и Si (до 0,4%), а также вредные примеси — S и Р; эти элементы попадают в сталь в связи с технологией её изготовления (главным образом из шихтовых материалов).
В зависимости от содержания С различают низкоуглеродистую (до 0,25% С), среднеуглеродистую (0,25—0,6% С) и высокоуглеродистую (более 0,6% С) сталь. В состав легированных сталей, помимо указанных компонентов, входят т. н. легирующие элементы (Cr, Ni, Mo, W, V, Ti, Nb, Zr, Со и др.), которые намеренно вводят в С. для улучшения её технологических и эксплуатационных характеристик или для придания ей особых свойств; легирующими элементами могут служить также Mn (при содержании более 1%) и Si (более 0,8%). По степени легирования (т. с. по суммарному содержанию легирующих элементов) различают низколегированные (менее 2,5%), среднелегированные (2,5—10%) и высоколегированные (более 10%) стали. Легированные стали часто называются по преобладающим в ней компонентам (например, вольфрамовая, высокохромистая, хромомолибденовая, хромомарганцевоникелевая, хромоникелемолибденованадиевая).
По характеру застывания металла в изложнице различают спокойную, полуспокойную и кипящую сталь. Поведение металла при кристаллизации обусловлено степенью его раскисленности: чем полнее удалён из стали кислород, тем спокойнее протекает процесс затвердевания; при разливке малораскисленной стали в изложнице происходит бурное выделение пузырьков окиси углерода — сталь как бы «кипит». Полуспокойная сталь занимает промежуточное положение между спокойной и кипящей сталями. Каждый из этих видов металла имеет достоинства и недостатки; выбор технологии раскисления и разливки стали определяется её назначением и технико-экономическими показателями производства.
- Большая Советская энциклопедия (электронный вариант — совместный проект Yandex.ru и Rubricon.ru)
Источник: www.rus-met.ru
Сталь.
Условия применения стали предъявляют самые разнообразные требования к её физико-химическим свойствам. В связи с этим в состав сплава могут вводиться различные лигатуры, уменьшая долю железа. Поэтому существует уточнённое определение стали – это сплав железа и углерода, но при этом массовая доля железа должна составлять не менее 45%.
Наличие в сплаве железа, углерода и легирующих элементов в тех или иных долях определяет принадлежность стали к какому-либо классу.
Классификация стали.
Несмотря на существование множества современных высокотехнологичных материалов, сталь остаётся одним из самых широко применяемых материалов. Относится это и к производству приводных механизмов. Каким бы ни был редуктор, в нём обязательно присутствуют стальные детали. Справедливо это утверждение и по отношению к приводным цепям.
Итак, рассмотрим основные варианты классификации стали.
По назначению.
По своему назначению сталь подразделяется на следующие категории – строительная, машиностроительная и инструментальная.
Строительная сталь.
Основным требованием, предъявляемым к строительной стали, является хорошая свариваемость. Это возможно при содержании углерода до 0,25%. Справедливым будет утверждение, что к строительным относятся низкоуглеродистые стали. Типовые марки – Ст1, Ст2 и Ст3.
Применение строительной стали.
Химический состав строительной стали определяет её применение в различных строительных конструкциях или оборудовании при необходимости соединения сборочных единиц путём проведения сварочных работ. Некоторые модели цилиндрических редукторов компонуются в корпусах из строительной стали.
Машиностроительная сталь.
Применение машиностроительной стали.
Среднеуглеродистые машиностроительные стали применяются при производстве самого широкого спектра деталей в общем машиностроении. Как правило, производственный процесс подразумевает наличие термических или химико-термических операций. Пример продукции, представленной в каталоге, — запасные части редукторов и звенья приводных роликовых цепей.
Инструментальная сталь.
Название инструментальной стали говорит за себя. Основным требованием, предъявляемым к любому стальному инструменту, является твёрдость. Эта характеристика достигается путём достижения доли содержания углерода в сплаве свыше 0,7%. Наиболее распространённые марки – от У7 до У13.
Применение инструментальной стали.
Помимо своего прямого назначения, инструментальная сталь применяется при производстве различных пружин. В частности, плоские пружины используются при сборке электродвигателей и соединительных замков цепей.
По содержанию углерода.
Показатель процентного содержания углерода в химическом составе стали определяет её отношение к одной из трёх групп:
Низкоуглеродистые стали.
Низкоуглеродистая сталь может иметь множество различных обозначений. Всё зависит от массовой доли углерода и наличия в сплаве дополнительных химических элементов. Пример – Ст 08пс, Сталь 10 или 25ХГЛ. Общее в обозначении – первое число не более 25. Самый характерный признак данной категории – прекрасная свариваемость
Применение низкоуглеродистой стали в редукторах.
Среднеуглеродистая сталь.
Среднеуглеродистые стали имеют в своей маркировке начальные числа от 30 до 50, что означает сотые доли процента содержания углерода. Свариваемость плохая – всем знакома ситуация, когда шов трескается. Пример марок среднеуглеродистых сталей – Сталь 40Х, Сталь 45 или 50Г2.
Применение среднеуглеродистой стали.
До недавних пор среднеуглеродистые стали являлись основным материалом для изготовления валов-шестерен и колёс зубчатых редукторов. Например, так производились редукторы типа РМ или РЦД. В настоящее время из данной категории металла изготавливают различные валы и муфты, работающие под нагрузкой или при повышенной вибрации.
Высокоуглеродистые стали.
Применение высокоуглеродистых сталей.
Источник: www.prombirga.ru