К какой группе относится титан

Содержание

Историческая справка. Титан в виде оксида (IV) был открыт английским любителем-минералогом У. Грегором в 1791 году в магнитных железистых песках местечка Менакан (Англия); в 1795 году немецкий химик М. Г. Клапрот установил, что минерал рутил представляет собой природный оксид этого же металла, названного им «титаном» [в греческой мифологии титаны — дети Урана (Неба) и Геи (Земли)]. Выделить Титан в чистом виде долго не удавалось; лишь в 1910 году американский ученый М. А. Хантер получил металлический Титан нагреванием его хлорида с натрием в герметичной стальной бомбе; полученный им металл был пластичен только при повышенных температурах и хрупок при комнатной из-за высокого содержания примесей. Возможность изучать свойства чистого Титана появилась только в 1925, когда нидерландские ученые А. Ван-Аркел и И. де Бур методом термической диссоциации иодида титана получили металл высокой чистоты, пластичный при низких температурах.

Титан и его сплавы

В биосфере Титан в основном рассеян. В морской воде его содержится 10 -7 %; Титан — слабый мигрант.

Физические свойства Титана. Титан существует в виде двух аллотропических модификаций: ниже температуры 882,5 °С устойчива α-форма с гексагональной плотноупакованной решеткой (а = 2,951Å, с = 4,679Å), a выше этой температуры — β-форма с кубической объемноцентрированной решеткой а = 3,269Å. Примеси и легирующие добавки могут существенно изменять температуру α/β превращения.

Плотность α-формы при 20°С 4,505 г/см 3 , a при 870°С 4,35 г/см 3 ; β-формы при 900°С 4,32 г/см 3 ; атомный радиус Ti 1,46 Å, ионные радиусы Ti + 0,94 А, Ti 2+ 0,78 Å, Ti 3+ 0,69 Å, Ti 4+ 0,64 Å; Тпл 1668 °С, Ткип 3227 °С; теплопроводность в интервале 20-25°С 22,065 вт/(м·К) [0,0527 кал/(см·сек·°С)]; температурный коэффициент линейного расширения при 20°С 8,5·10 -6 , в интервале 20-700°С 9,7·10 -6 ; теплоемкость 0,523 кдж/(кг·К) [0,1248 кал/(г·°С)]; удельное электросопротивление 42,1·10 -6 ом·см при 20 °С; температурный коэффициент электросопротивления 0,0035 при 20 °С; обладает сверхпроводимостью ниже 0,38 К. Титан парамагнитен, удельная магнитная восприимчивость 3,2·10 -6 при 20 °С. Предел прочности 256 Мн/м 2 (25,6 кгс/мм 2 ), относительное удлинение 72% , твердость по Бринеллю менее 1000 Мн/м 2 (100 кгс/мм 2 ). Модуль нормальной упругости 108 000 Мн/м 2 (10 800 кгс/мм 2 ). Металл высокой степени чистоты ковок при обычной температуре.

Читайте также:
Что такое синее золото загадка ответ

Применяемый в промышленности технический Титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С. Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см 3 , предел прочности 300-550 Мн/м 2 (30-55кгс/мм 2 ), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м 2 (115-165 кгс/мм 2 ). Конфигурация внешней электронной оболочки атома Ti 3d 2 4s 2 .

Химические свойства Титана. Чистый Титан — химически активный переходный элемент, в соединениях имеет степени окисления +4, реже +3 и +2. При обычной температуре и вплоть до 500-550 °С коррозионно устойчив, что объясняется наличием на его поверхности тонкой, но прочной оксидной пленки.

С кислородом воздуха заметно взаимодействует при температуре выше 600 °С с образованием ТiO2. Тонкая титановая стружка при недостаточной смазке может загораться в процессе механической обработки. При достаточной концентрации кислорода в окружающей среде и повреждении окисной пленки путем удара или трения возможно загорание металла при комнатной температуре и в сравнительно крупных кусках.

Оксидная пленка не защищает Титан в жидком состоянии от дальнейшего взаимодействия с кислородом (в отличие, например, от алюминия), и поэтому его плавка и сварка должны проводиться в вакууме, в атмосфере нейтрального газа или под флюсом. Титан обладает способностью поглощать атмосферные газы и водород, образуя хрупкие сплавы, непригодные для практическое использования; при наличии активированной поверхности поглощение водорода происходит уже при комнатной температуре с небольшой скоростью, которая значительно возрастает при 400 °С и выше.

Растворимость водорода в Титане является обратимой, и этот газ можно удалить почти полностью отжигом в вакууме. С азотом Титан реагирует при температуре выше 700 °С, причем получаются нитриды типа TiN; в виде тонкого порошка или проволоки Титан может гореть в атмосфере азота. Скорость диффузии азота и кислорода в Титане значительно ниже, чем водорода. Получаемый в результате взаимодействия с этими газами слой отличается повышенными твердостью и хрупкостью и должен удаляться с поверхности титановых изделий путем травления или механической обработки. Титан энергично взаимодействует с сухими галогенами, по отношению к влажным галогенам устойчив, так как влага играет роль ингибитора.

Металл устойчив в азотной кислоте всех концентраций (за исключением красной дымящейся, вызывающей коррозионное растрескивание Титана, причем реакция иногда идет со взрывом), в слабых растворах серной кислоты (до 5% по массе). Соляная, плавиковая, концентрированная серная, а также горячие органических кислоты: щавелевая, муравьиная и трихлоруксусная реагируют с Титаном.

Титан коррозионно устойчив в атмосферном воздухе, морской воде и морской атмосфере, во влажном хлоре, хлорной воде, горячих и холодных растворах хлоридов, в различных технологических растворах и реагентах, применяемых в химической, нефтяной, бумагоделательной и других отраслях промышленности, а также в гидрометаллургии. Титан образует с С, В, Se, Si металлоподобные соединения, отличающиеся тугоплавкостью и высокой твердостью.

Карбид TiC (tпл 3140 °С) получают нагреванием смеси TiO2 с сажей при 1900-2000 °С в атмосфере водорода; нитрид TiN (tпл 2950 °С) — нагреванием порошка Титан в азоте при температуре выше 700 °С. Известны силициды TiSi2, TiSi и бориды TiB, Ti2B5, TiB2. При температуpax 400-600 °C Титан поглощает водород с образованием твердых растворов и гидридов (TiH, TiH2).

Читайте также:
Что считается браком в ювелирных изделиях

При сплавлении TiO2 со щелочами образуются соли титановых кислот мета- и ортотитанаты (например, Na2TiO3 и Na4TiO4), а также полититанаты (например, Na2Ti2O5 и Na2Ti3O7). К титанатам относятся важнейшие минералы Титана, например, ильменит FeTiO3, перовскит CaTiO3. Все титанаты малорастворимы в воде.

Оксид Титана (IV), титановые кислоты (осадки), а также титанаты растворяются в серной кислоте с образованием растворов, содержащих титанилсульфат TiOSO4. При разбавлении и нагревании растворов в результате гидролиза осаждается Н2ТiO3, из которой получают оксид Титана (IV). При добавлении перекиси водорода в кислые растворы, содержащие соединения Ti (IV), образуются перекисные (надтитановые) кислоты состава Н4ТiO5 и H4TiO8 и соответствующие им соли; эти соединения окрашены в желтый или оранжево-красный цвет (в зависимости от концентрации Титана), что используется для аналитического определения Титана.

Получение Титана. Наиболее распространенным методом получения металлического Титана является магниетермический метод, то есть восстановление тетрахлорида Титана металлическим магнием (реже — натрием):

В обоих случаях исходным сырьем служат оксидные руды Титана — рутил, ильменит и другие. В случае руд типа ильменитов Титан в форме шлака отделяется от железа путем плавки в электропечах. Шлак (так же, как рутил) подвергают хлорированию в присутствии углерода с образованием тетрахлорида Титана, который после очистки поступает в восстановительный реактор с нейтральной атмосферой.

Титан по этому процессу получается в губчатом виде и после измельчения переплавляется в вакуумных дуговых печах на слитки с введением легирующих добавок, если требуется получить сплав. Магниетермический метод позволяет создать крупное промышленное производство Титана с замкнутым технологическим циклом, так как образующийся при восстановлении побочный продукт — хлорид магния направляется на электролиз для получения магния и хлора.

В ряде случаев для производства изделий из Титана и его сплавов выгодно применять методы порошковой металлургии. Для получения особо тонких порошков (например, для радиоэлектроники) можно использовать восстановление оксида Титана (IV) гидридом кальция.

Применение Титана. Основные преимущества Титана перед другими конструкционными металлами: сочетание легкости, прочности и коррозионной стойкости.

Титановые сплавы по абсолютной, а тем более по удельной прочности (т. е. прочности, отнесенной к плотности) превосходят большинство сплавов на основе других металлов (например, железа или никеля) при температурах от -250 до 550 °С, а по коррозионности они сравнимы со сплавами благородных металлов. Однако как самостоятельный конструкционный материал Титан стал применяться только в 50-е годы 20 века в связи с большими техническими трудностями его извлечения из руд и переработки (именно поэтому Титан условно относили к редким металлам). Основная часть Титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Сплавы Титана с железом, известные под названием «ферротитан» (20-50% Титана), в металлургии качественных сталей и специальных сплавов служат легирующей добавкой и раскислителем.

Технический Титан идет на изготовление емкостей, химические реакторов, трубопроводов, арматуры, насосов и других изделий, работающих в агрессивных средах, например, в химическом машиностроении. В гидрометаллургии цветных металлов применяется аппаратура из Титана. Он служит для покрытия изделий из стали.

Использование Титана дает во многих случаях большой технико-экономический эффект не только благодаря повышению срока службы оборудования, но и возможности интенсификации процессов (как, например, в гидрометаллургии никеля). Биологическая безвредность Титана делает его превосходным материалом для изготовления оборудования для пищевой промышленности и в восстановительной хирургии.

В условиях глубокого холода прочность Титана повышается при сохранении хорошей пластичности, что позволяет применять его как конструкционный материал для криогенной техники. Титан хорошо поддается полировке, цветному анодированию и других методам отделки поверхности и поэтому идет на изготовление различных художественных изделий, в т. ч. и монументальной скульптуры. Примером может служить памятник в Москве, сооруженный в честь запуска первого искусственного спутника Земли. Из соединений Титана практическое значение имеют оксиды, галогениды, а также силициды, используемые в технике высоких температур; бориды и их сплавы, применяемые в качестве замедлителей в ядерных энергетических установках благодаря их тугоплавкости и большому сечению захвата нейтронов. Карбид Титана, обладающий высокой твердостью, входит в состав инструментальных твердых сплавов, используемых для изготовления режущих инструментов и в качестве абразивного материала.

Читайте также:
Как хранить украшения бижутерия

Оксид титана (IV) и титанат бария служат основой титановой керамики, а титанат бария — важнейший сегнетоэлектрик.

Титан в организме. Титан постоянно присутствует в тканях растений и животных. В наземных растениях его концентрация — около 10 -4 % , в морских — от 1,2·1

Источник: tdsm.ru

Какой группе металлов относится титан?

Подгру́ппа тита́на — химические элементы 4-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы IV группы). По номенклатуре ИЮПАК подгруппа титана содержит в себе титан, цирконий, гафний и резерфордий.

Как добывают титановую руду?

Добыча титановой руды осуществляется сравнительно просто и не требует сложных операций и специального горного оборудования. Если титановые минералы находятся в песчаных месторождениях, то их собирают землесосными снарядами, перекачивают в баржи и доставляют на обогатительную установку.

Как получают титан в промышленности?

В промышленных масштабах титан получают хлорированием рудных концентратов (если сырьём служит ильменит или титаномагнетит, то хлорируют шлаки, отделяемые от расплавленного железа при плавке в электропечах). Последующим восстановлением TiCl4 металлическим магнием (реже натрием) получают титановую губку.

Зачем нужен титан?

Титан можно применять для изготовления броневых плит, лопастей пропеллера и снарядных ящиков. В настоящее время титан применяется в конструкции самолетов военной авиации Дуглас Х-3 для обшивки, Рипаблик F-84F, Кертисс-Райт J-65 и Боинг В-52. Применяется титан и при постройке гражданских самолетов DC-7.

Что прочнее титана?

Использование металлического титана во многих отраслях промышленности обусловлено тем, что его прочность примерно равна прочности стали при том, что он на 45 % легче. Титан на 60 % тяжелее алюминия, но прочнее его примерно вдвое.

Что крепче вольфрам или титан?

Титан очень прочный и твердый и имеет гораздо меньшую плотность. Вольфрам слегка магнитный и слегка электропроводящий. Титан немагнитный и менее электрически проводящий. Вольфрам не является коррозионно-стойким в морской воде в качестве титана и не является фотокатализатором, подобным титану.

Что крепче железо или титан?

Титан — легкий прочный металл серебристо-белого цвета. Он в три раза легче стали, почти вдвое легче железа и всего лишь в полтора раза тяжелее алюминия. А вот в прочности титан не уступает стали: он в полтора раза прочнее.

Сколько стоит 1 кг вольфрама?

Цена за 1 кг лома вольфрама достаточно высока и определяется: стоимостью металла на мировых рынках; курсом валют. Режим работы:

Цены РЗМ
Вольфрам 2300 руб/кг
Быстрорез Р6М5 234 руб/кг
Баббиты 1100 руб. кг
Никель 1200 руб/кг

Что тверже титан или вольфрам?

Титан легче, чем вольфрам, при ненамного меньшей плотности. Титановые сплавы почти на 50% легче нержавеющей стали, и, разумеется, гораздо легче «традиционных» драгоценных металлов.

Читайте также:
Лучшие китайские Смарт часы женские

Что тверже титана и алмаза?

Ответ: Прочнее, чем сталь и титан, — это алмаз.

Какой самый прочный сплав?

  1. 1 Иридий Самый прочный металл – иридий – серебристо-белый, твердый и тугоплавкий, который относится к платиновой группе.
  2. 2 Рутений .
  3. 3 Тантал .
  4. 4 Хром .
  5. 5 Бериллий .
  6. 6 Осмий .
  7. 7 Рений .
  8. 8 Вольфрам .

Какой самый легкий и прочный металл в мире?

Если же брать самый крепкий и легкий металл, то им принято считать алюминий. Его плотность составляет 2,7 грамм на сантиметр кубический. Этот металл достаточно распространен в природе и получил широкое применение в промышленности. Многие сплавы алюминия прочнее стали и при этом гораздо легче нее.

Какой металл самый твердый А какой самый пластичный?

хром: самый твердый; золото: самый пластичный (из 1 г этого металла можно вытянуть проволоку длиной 2,4 км);

Какой из этих металлов самый легкий?

Самый легкий металл, известный науке, это, безусловно, литий. Как и остальные легчайшие металлы, он относится к группе щелочных металлов, которой свойственная высокая химическая активность. Плотность лития – 0,534 грамма на кубический сантиметр, т. е.

Почему литий самый легкий металл?

Среди щелочных металлов литий имеет самую высокую температуру плавления и кипения (180 и 1340 °C, соответственно) и самую низкую плотность среди всех металлов — 0,53 г/см³. Это самый лёгкий металл в Таблице Менделеева, поэтому он всплывает в воде.

Какой металл легкий что даже не тонет в воде?

Что такое легкий металл?

Легкими металлами называют металлы с небольшой плотностью. Наиболее важными легкими металлами являются: алюминий, олово, магний, титан, бериллий и литий. Также, к этой группе обычно относят: галлий, индий, таллий, висмут и кадмий.

Как определить легкий или тяжелый металл?

  1. легкие — (плотность 5 г/см3). К ним относят переходные металлы шестого периода и актиноиды. Самый тяжелый — осмий (Os, r=22,5 г/см3).

Какой из металлов самый тугоплавкий?

Какие металлы называют тяжёлыми?

К ним относится более 40 химических элементов периодической системы Д. И. Менделеева. Тяжелыми металлами являются хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьма, теллур, вольфрам, ртуть, таллий, свинец, висмут.

Какие металлы опасны для человека?

Загрязнение тяжёлыми металлами Среди разнообразных загрязняющих веществ тяжёлые металлы (в том числе ртуть, свинец, кадмий, цинк) и их соединения выделяются распространенностью, высокой токсичностью, многие из них — также способностью к накоплению в живых организмах.

Как определить тяжелые металлы?

По классификации Н. Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. Таким образом, к тяжелым металлам относятся Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg.

Какие металлы относятся к тяжелым цветным металлам?

К тяжелым цветным металлам относят свинец, медь, олово, цинк, никель.

Какие из тяжелых металлов являются наиболее опасными для здоровья человека?

Специалистами по охране окружающей среды среди металлов-токсикантов выделена приоритетная группа, в которую входят кадмий, медь, мышьяк, никель, ртуть, свинец, цинк и хром как наиболее опасные для здоровья человека и животных (ртуть, свинец и кадмий наиболее токсичны).

Какие металлы называются цветными?

Цветные металлы — особый класс нержавеющих металлов и сплавов, в составе которых нет железа. Сюда входят олово, медь, цинк, никель, серебро, золото. Металлы называются цветными, потому что каждый из них имеет определенный окрас.

Какие металлы называют черными и цветными?

Черные — это железо и сплавы на его основе (чугун, марганец, сталь). Цветные — все металлы их их сплавы, кроме железа и его сплавов (медь, свинец, цинк). Драгоценные — металлы, не подверженные коррозию и окислению (золото, серебро, платина).

Читайте также:
Как делать гортензии из зефира

Какие металлы и сплавы называют цветными?

К цветным металлам относятся все металлы, кроме железа и сплавов на его основе – сталей и чугунов, которые называются черными.

Что относится к черным металлам?

черме́т) — железо и сплавы на его основе (стали, ферросплавы, чугуны). К чёрным металлам также зачастую относят марганец и, иногда, — хром и ванадий. Эти металлы используются главным образом при производстве чугунов и сталей.

Стоит почитать

  • Какие есть прикладные науки?
  • Что можно клеить холодной сваркой?
  • Что такое фондовый рынок простыми словами?
  • Какой певческий голос?
  • Как не показывать примечания в ворде?
  • Чем характеризуется девиантное поведение?
  • Кто вывел золотое сечение?
  • Какая длина всего кишечника?
  • Кто такой человек меланхолик?
  • Что такое Циркулирующие иммунные комплексы?

Похожие вопросы

  • Что такое правовая группа или семья?
  • Что такое национализм своими словами?
  • Что относится к устным источникам?
  • Что такое бинарные опционы простыми словами?
  • Что есть смысл?
  • Какие есть стилистические приемы?
  • Какой бывает стилистическая окраска?
  • Как рассчитать математическое ожидание?
  • Что такое электромагнитная волна конспект?
  • Что специалисты понимают под понятием приемлемый риск?

Источник: questions.students-library.com

Титан, свойства атома, химические и физические свойства

Титан

Титан, свойства атома, химические и физические свойства.

Поделиться в:

47,867(1) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2

Титан — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 22. Расположен в 4-й группе (по старой классификации — побочной подгруппе четвертой группы), четвертом периоде периодической системы.

Физические свойства титана

Атом и молекула титана. Формула титана. Строение титана:

Титан (лат. Titanium, назван в честь титанов) – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Ti и атомным номером 22. Расположен в 4-й группе (по старой классификации – побочной подгруппе четвертой группы), четвертом периоде периодической системы.

Титан – амфотерный металл. Относится к переходным металлам. Относится к группе группе лёгких, редких, тугоплавких, цветных металлов .

Титан обозначается символом Ti.

Как простое вещество титан при нормальных условиях представляет собой лёгкий, прочный металл серебристо-белого цвета.

Молекула титана одноатомна.

Химическая формула титана Ti.

Электронная конфигурация атома титана 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2 . Потенциал ионизации (первый электрон) атома титана равен 658,81 кДж/моль (6,828120(12) эВ).

Строение атома титана. Атом титана состоит из положительно заряженного ядра (+22), вокруг которого по четырем оболочкам движутся 22 электрона. При этом 20 электронов находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку титан расположен в четвертом периоде, оболочек всего четыре. Первая – внутренняя оболочка представлена s-орбиталью.

Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внутренняя оболочка представлена s-, р- и d-орбиталями. Четвертая – внешняя оболочка представлена s-орбиталью. На внутреннем энергетическом уровне атома титана на 3d-орбитали находятся два неспаренных электрона. На внешнем энергетическом уровне атома титана – на s-орбитали находится два спаренных электрона.

В свою очередь ядро атома титана состоит из 22 протонов и 26 нейтронов.

Радиус атома титана (вычисленный) составляет 176 пм.

Атомная масса атома титана составляет 47,867(1) а. е. м.

Титан обладает высокой коррозионной стойкостью.

Источник: xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Рейтинг
Загрузка ...