Оксид серебра (I) Ag2O – буро-черные кристаллы с кубической кристаллической решеткой, плотность 7,14 г/см 3 , при 300°С разлагается.
Имеет выраженные основные свойства. В воде плохо растворяется, но придает ей слабощелочную реакцию:
При нагревании до 300°С разлагается на кислород и серебро:
С щелочами не взаимодействует, в водных растворах аммиака образует гидроксид диамминсеребра (I):
В разбавленной серной кислоте растворяется, образуя сульфат серебра (I):
Проявляет окислительные свойства, особенно по отношению к некоторым органическим веществам:
Оксид серебра (I) получают осторожным нагреванием гидроксида серебра:
Гидроксид серебра (I) AgOH не выделен в индивидуальном виде, это неустойчивое соединение, из растворов не образуется. При взаимодействии солей серебра (I) с щелочами в растворе образуется гидратированный оксид Ag2O·nH2O.
6.8. Обнаружение ионов серебра (I)
Ионы серебра (I) в растворе можно обнаружить при приливании раствора, содержащего хлорид-ионы :
Осаждение цитрата серебра гидроксидом натрия. Получение серебра плавлением цитрата серебра
наблюдается выпадение характерного белого творожистого осадка.
Оксид серебра (I), свойства и получение, химические реакции
Оксид серебра (I), свойства и получение, химические реакции.
Оксид серебра (I) – неорганическое вещество, имеет химическую формулу Ag2O.
Краткая характеристика оксида серебра (I):
Оксид серебра (I) – неорганическое вещество коричнево-черного цвета.
Химическая формула оксида серебра (I) Ag2O.
В воде практически не растворяется. Растворимость оксида серебра (I) в воде 0,017 грамм на литр. При растворении в воде оксид серебра (I) придает воде слабощелочную реакцию.
Оксид серебра (I) под воздействием солнечного света медленно чернеет, высвобождая кислород .
Имеет почти такую же электрическую проводимость, как и у чистого серебра.
Физические свойства оксида серебра (I):
Наименование параметра: | Значение: |
Химическая формула | Ag2O |
Синонимы и названия иностранном языке | silver oxide (англ.) |
Тип вещества | неорганическое |
Внешний вид | буро-черные кубические кристаллы |
Цвет | коричнево-черный |
Вкус | —* |
Запах | — |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | твердое вещество |
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м 3 | 7140 |
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см 3 | 7,14 |
Температура разложения, °C | 280 |
Молярная масса, г/моль | 231,735 |
Получение оксида серебра (I):
Оксид серебра (I) получается в результате следующих химических реакций:
Как получить гидроксид натрия в домашних условиях ?
- 1. путем взаимодействия нитрата серебра со щёлочью (например, гидроксидом натрия или гидроксидом калия ) в водном растворе:
В ходе химической реакции образуется гидроксид серебра, который быстро разлагается на оксид серебра (I) и воду:
- 2. путем анодного окисления металлического серебра в дистиллированной воде.
- 3. путем нагревания гидроксида серебра:
- 4. путем термического разложения карбоната серебра:
Химические свойства оксида серебра (I). Химические реакции оксида серебра (I):
Оксид серебра (I) – основный оксид.
Химические свойства оксида серебра (I) аналогичны свойствам оксидов других металлов . Поэтому для него характерны следующие химические реакции:
1. реакция оксида серебра (I) с водородом:
В результате реакции оксида серебра (I) и водорода происходит восстановление серебра : образуется чистое серебро и вода.
2. реакция оксида серебра (I) с оксидом углерода (углекислым газом):
Оксид серебра (I) реагирует с углекислым газом (являющийся кислотным оксидом), образуя соль – карбонат серебра . При этом в качестве исходного вещества используется оксид серебра (I) в виде суспензии.
3. реакция оксида серебра (I) с угарным газом:
В результате реакции оксида серебра (I) с угарным газом происходит восстановление серебра: образуется чистое серебро и углекислый газ.
4. реакция оксида серебра (I) с водой:
Оксид серебра (I) плохо растворяется в воде и придает ей слабощелочную реакцию.
5. реакция оксида серебра (I) с оксидом теллура:
В результате реакции образуется теллурат серебра (I) .
6. реакция оксида серебра (I) с плавиковой кислотой:
В результате химической реакции получается соль – фторид серебра (I) и вода.
7. реакция оксида серебра (I) с азотной кислотой:
В результате химической реакции получается соль – нитрат серебра (I) и вода .
Аналогично проходят реакции оксида серебра (I) и с другими кислотами.
8. реакция оксида серебра (I) с бромистым водородом (бромоводородом):
В результате химической реакции получается соль – бромид серебра (I) и вода .
9. реакция оксида серебра (I) с йодоводородом:
В результате химической реакции получается соль – йодид серебра (I) и вода .
10. реакция оксида серебра (I) с аммиаком и водой:
В результате химической реакции получается гидроксид диамминсеребра.
11. реакция термического разложения оксида серебра (I):
2Ag2O → 4Ag + O2 (t = 160-300 o C).
В результате химической реакции образуется чистое серебро и кислород.
12. реакция оксида серебра (I) с гидроксидом натрия и водой:
В результате химической реакции получается дигидроксоаргенатат натрия.
13. реакция оксида серебра (I) с гидроксидом калия и водой:
В результате химической реакции получается дигидроксоаргентат калия.
14. реакция оксида серебра (I) с пероксидом водорода:
В результате реакции оксида серебра (I) и пероксида водорода происходит восстановление серебра: образуется чистое серебро, кислород и вода.
Применение и использование оксида серебра (I):
Оксид серебра (I) используется в медицине как антисептическое средство.
оксид серебра (I) реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения масса взаимодействие оксида серебра (I)
реакции с оксидом серебра (I)
Справочники
Мировая экономика
Востребованные технологии
Поиск технологий
О чём данный сайт?
Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.
Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.
CH3COOAg + NaOH = Ag2O + CH3COONa + H2O — Калькулятор химических реакций
Для уравнивания химической реакции, введите уравнение реакции и нажмите кнопку Уравнять. Решенное уравнение появится сверху.
- Используйте заглавные символы для начального знака элемента и строчные символы для второго знака. Примеры: Fe, Au, Co, Br, C, O, N, F.
- Ионные заряды пока не поддерживаются и не будут приняты в расчет.
- Переместите неизменные группы в соединениях, чтобы не допустить неопределенность. Например, C6H5C2H5 + O2 = C6H5OH + CO2 + H2O не уравняется, но XC2H5 + O2 = XOH + CO2 + H2O уравняется.
- Промежуточные расстояния [такие, как (s) (aq) или (g)] не требуются.
- Вы можете использовать круглые () и квадратные скобки [].
Примеры
- CH3COOAg + NaOH + CH3COOZn = ZnOAg + CH3COONa + H2O
- CH3COOAg + NaOH = Ag2O + C2H3NaO2 + H2O
- CH3COOAg + NaOH = CH3COOOH + NaAg
- Zn + Fe(No3)3 = Fe + Zn(No3)
- CuCl2 + Na2Co3 = CuCo3 + NaCl
- Fe(OH)2 + Cl2O5 = (FeOH)ClO3 + H2O
- NaN3 + KNO3 + SiO2 = Na2SiO3 + N2 + K2SiO3
- BaCl2 + Na3Po4 = Ba3(Po4)2 + NaCl
- NH4I + KNO3 = NH4NO3 + KI
- NaNO2 + NaCl + H2SO4 = Cl + NO + H2O + Na2O4S
- AgNo3 + Cu = Ag + Cu(No3)2
- Nh4OH + HBr = H2O + Nh4Br
Калькуляторы
Химическое уравнение
- Программа решения химических уравнений
- Калькулятор стехиометрических реакций
- Калькулятор Лимитирующего реагента
- Ionic Equation Calculator
- окислительно-восстановительные реакции
Источник: www.chemicalaid.com
Гидроксид натрия: формула, уравнения реакций, свойства
Гидроксид натрия, формула которого — NaOH, относится к разряду сильных щелочей, едких и опасных для человека, но несмотря на это, каждый человек встречается с гидроокисью натрия ежедневно. В косметических и фармацевтических средствах, в бытовой химии и даже в пищевых продуктах.
Свойства едкой щелочи
Гидроокись (гидроксид) натрия называют также едким натром, едкой щёлочью (такое название обусловлено способностью вещества разъедать стекло, кожу, бумагу, вызывать сильнейшие химические ожоги) и каустической содой (каустик — от греч. kaustikos жгучий, едкий).
Физические свойства
Гидроксид натрия выпускается в виде гранул белого цвета, скользких на ощупь.
Растворение вещества в воде, происходит с выделением большого количества тепла. Гидроксид натрия является гигроскопичным веществом, т. е. он активно поглощает водяные пары из воздуха. А также каустик способен поглощать углекислый газ, образуя на воздухе NaНCO3.
Молярная масса NaOH равна 39,997 г/моль, плотность вещества 2,02 г/см3, растворимость в воде 108,7 г/100 мл, температуры кипения и плавления для каустической соды равны соответственно 1403 °C и 323 °C.
Молекулы гидроокиси натрия полностью диссоциируют на ионы в водных растворах, а значит едкий натр — сильное основание. Водные растворы гидроокиси натрия обладают сильнейшей щелочной реакцией (pH 1%-раствора = 13).
Химические свойства
NaOH способен вступать в реакции с кислотами (серной H2SO4, угольной H2CO3, соляной HCl и другими), в результате чего образуются соли и вода:
- 2NaOH + H2CO3 → Na2СO3 + 2H2O,
- 2NaOH + H2SO4 → Na2SO4 + 2H2O.
С кислотными оксидами в результате взаимодействия образуются соль и вода:
- SiO2 + 2NaOH → Na2SiO3 + H2O,
- 2NaOH + SO2 → Na2SO3 + H2O.
C основными оксидами реакция не идёт: MgO/ Bao /CaO + NaOH ≠.
C амфотерными оксидами гидроксид натрия также образует соли и воду: ZnO + 2NaOH + H2O → Na2[Zn (OH)4] (раствор).
C солями гидроокись натрия реагирует при условии, что в результате будет образовано нерастворимое как, например, в реакции с сульфатом меди (CuSO4 + NaOH), газообразное вещество или вода:
- Fe2 (SO4)3 + 6NaOH → 2Fe (OH)3↓ + 3Na2SO4,
- CuSO4 + 2NaOH → Cu (OH)2↓ + Na2SO4,
- CuCl2 + 2NaOH → Cu (OH)2↓ + 2NaCl.
C неметаллами:
- с фосфором 3NaOH + 4P + 3H2O → 3NaH2PO4 + PH3,
- с серой 6NaOH + 3S → 2Na2S + Na2SO3 + 3H2O.
C металлами гидроокись натрия реагирует с цинком (Zn), алюминием (Al), титаном (Ti). C железом же и медью NaOH не взаимодействует. Примеры:
- Zn + 2NaOH + 2H2O → H2↑ + Na2[Zn (OH)4] тетрагидроксицинкат натрия,
- 2NaOH + 2Al + 6H2O → 3H2↑ + 2Na[Al (OH)4] тетрагидроксиалюминат натрия.
C жирами щёлочь реагирует с образованием мыла: (C17H35COO)3C3H5 + 3NaOH → C3H5 (OH)3 + 3C17H35COONa.
Методы получения вещества
Промышленные методы, с помощью которых можно получить едкий натр, делятся на химические и электрохимические.
Химические методы
Существует три основных химических метода.
Пиролитический метод состоит из двух стадий:
- Получение оксида натрия, разложением карбоната или гидрокарбоната при температуре: Na2CO3 = Na2O + CO2 или NaНCO3 = Na2O + 2CO2↑ + Н2О — при 1000 °C.
- Получение непосредственно гидроокиси натрия, растворением оксида: Na2O + H2O = 2NaOH.
Известковый метод: взаимодействие карбоната натрия (соды) с гашёной известью (гидроксидом кальция) при температуре (80 °C) называют каустификацией. Результатом такой реакции является раствор каустической соды и осадок карбоната кальция.
Уравнение реакции: Na2CО3 + Са (ОН)2 = CaCО3 ↓ + 2NaOH.
Ферритный метод получения может происходить двумя способами:
- Спекание кальцинированной соды с оксидом железа (III) при температуре 1100−1200 °C с образованием феррита натрия: Na2CO3 + Fe2O3 = NaFeO2 + CO2↑.
- Получение гидроокиси натрия происходит с помощью «ощелачивания» (добавления воды) феррита: 2NaFeO2 + H2O = 2NaOH + Fe2O3*H2O↓.
Серьёзными недостатками таких способов является большой расход энергии и сильная загрязнённость продукта. Такие методы получения NaOH в настоящее время почти не используются в промышленности.
Электрохимические методы
Из минерала галита, состоящего преимущественно из NaCl, с помощью электролиза получают гидроксид натрия. Помимо щёлочи в результате такой реакции, получают ещё и хлор и водород.
Записать процесс можно уравнением: 2NaCl + 2H2O → H2↑ + Cl2↑ + 2NaOH.
В лабораторных условиях щёлочь можно получить, например:
- растворением оксида в воде Na2O + H2O = 2NaOH,
- реакцией перекиси натрия с водой Na2O2 + H2O = 2NaOH+Н2О2.
Но в настоящее время химические методы получения редко используются в лаборатории, чаще используют электрохимические методы.
Области применения
Гидроокись натрия применяют в различных областях промышленности, в производстве, а также широко применяется для бытовых нужд:
- производство моющих агентов (мыла, шампуни), средства бытовой химии,
- целлюлозно-бумажная промышленность,
- химическая промышленность (в качестве катализатора или реагента, в аналитической химии для титрования, в нефтепереработке),
- оборонная промышленность использует каустик для нейтрализации отравляющих газов, как агент, очищающий воздух, вдыхаемый через дыхательный аппарат, от углекислого газа,
- текстильная промышленность (обработка хлопковых и шерстяных нитей — мерсеризация),
- пищевая промышленность (в процессе производства множества различных продуктов, таких как хлеб, различные напитки, карамель, мороженое и многое другое),
- косметология (в составах для пилинга),
- фотография (вещество используется в проявлении фотоматериалов).
Химическая опасность
Вещества, относящиеся ко второму (II) классу опасности — высокоопасные вещества — требуют применения защитных средств (химически устойчивая одежда, очки, перчатки), строгого соблюдения правил работы в лаборатории, осторожности и внимательности. Если у вас возникла тяга насладиться потрясающим сексом, вас определенно привлекут популярные индивидуалки Перми . Вы можете фильтровать шлюх по внушительному каталогу особенностей, указывая их габариты, объем груди, а также район проживания!
Едкий натр при попадании на кожу вызывает серьёзные химические ожоги, а при попадании в глаза способен вызвать серьёзные поражения зрения, вплоть до повреждения зрительного нерва и, как результат, — слепоты.
Необходимо помнить, что нейтрализовать действие каустика при попадании на слизистые или кожу можно слабыми растворами борной или уксусной кислоты. Глаза следует промывать слабым раствором борной кислоты и водой.
Источник: tvercult.ru