К d-элементам относят те элементы, атомы которых содержат валентные электроны на (n – 1)d ns-уровнях и составляют побочные (IIIВ–VIIВ, IВ, IIВ) подгруппы, занимая промежуточное положение между типичными s-металлами (IА, IIА) и p-элементами. Из 109 элементов периодической системы 37 относятся к d-элементам; из них последние 7 радиоактивны и входят в незавершенный седьмой период.
Электронное строение атомов d-элементов определяет их химические свойства. 3d-Элементы по химическим свойствам существенно отличаются от 4d- и 5d-элементов. При этом элементы IVВ–VIIВ подгрупп очень схожи по многим химическим свойствам. Это сходство обусловлено лантаноидным сжатием, которое из-за монотонного уменьшения радиусов при заполнении 4f-орбиталей приводит к практическому совпадению радиусов циркония и гафния, ниобия и тантала, молибдена и вольфрама, технеция и рения. Элементы этих пар очень близки по физическим и особенно по химическим свойствам; первые шесть элементов встречаются в одних рудных месторождениях, трудно разделяются; их иногда называют элементами-близнецами.
217) Предмет материаловедение ХРОМ (Cr)
Атомы d-элементов характеризуются общей электронной формулой (n – 1)d 1–10 ns 0–2 . Некоторые из тяжелых d-элементов не являются полными электронными аналогами. В табл. 8.10 приведены электронные формулы всех d-элементов и возможные степени окисления, проявляемые ими. Увеличение числа электронов иногда сопровождается немонотонностью заселения d-орбиталей. Это обусловлено сближением энергий (n – 1)d- и ns-орбиталей и усилением межэлектронного взаимодействия к концу периода.
Из рис. 8.11. видно, что наиболее тугоплавки металлы VВ и VIВ подгрупп. У них заполняется электронами половина d-подуровня и реализуется максимально возможное число неспаренных электронов, а следовательно, наибольшее число ковалентных связей. Дальнейшее заполнение приводит к уменьшению числа ковалентных связей и падению температур плавления.
2. Вследствие незаполненности d-оболочек и наличия близких по энергии незаполненных ns- и np-уровней, d-элементы склонны к комплексообразованию; их комплексные соединения, как правило, окрашены и парамагнитны.
3. d-Элементы чаще, чем элементы главных подгрупп, образуют соединения переменного состава (оксиды, гидриды, карбиды, силициды, нитриды, бориды). Кроме того, они образуют сплавы между собой и с другими металлами, а также интерметаллические соединения.
4. Для d-элементов характерен большой набор валентных состояний (табл. 8.10) и, как следствие этого, изменение кислотно-основных и окислительно-восстановительных свойств в широких пределах.
Поскольку часть валентных электронов находится на s-орбиталях, то проявляемые ими низшие степени окисления как правило равны двум. Исключение составляют элементы, ионы которых Э +3 и Э + имеют устойчивые конфигурации d 0 , d 5 и d 10 : Sc 3+ , Fe 3+ , Cr + , Cu + , Ag + , Au + .
Соединения, в которых d-элементы находятся в низшей степени окисления, образуют кристаллы ионного типа, в химических реакциях проявляют основные свойства и являются, как правило, восстановителями.
ХИМИЯ 9 класс : Хром
Устойчивость соединений, в которых d-элементы находятся в высшей степени окисления (равной номеру группы),увеличивается в пределах каждого переходного ряда слева направо, достигая максимума для 3d-элементов у Mn, а во втором и третьем переходных рядах – у Ru и Os соответственно. В пределах одной подгруппы стабильность соединений высшей степени окисления уменьшается в ряду 5d > 4d > 3d, о чем свидетельствует характер изменения энергии Гиббса (изобарно-изотермического потенциала) однотипных соединений, например:
7. Как известно, восстановительная способность металла определяется не только его энергией ионизации (М – ne – → М n+ ; +∆Hиониз), но и энтальпией гидратации образовавшегося катиона (М n+ + mH2O → М n+ ċmH2O; –∆Hгидр). Энергии ионизации d-элементов в сравнении с другими металлами велики, но они компенсируются большими энтальпиями гидратации их ионов. Вследствие этого электродные потенциалы большинства d-элементов отрицательны.
В периоде с ростом Z восстановительные свойства металлов уменьшаются, достигая минимума у элементов IВ группы. Тяжелые металлы VIIIВ и IВ групп за свою инертность названы благородными.
Окислительно-восстановительные тенденции соединений d-элементов определяются изменением устойчивости высших и низших степеней окисления в зависимости от положения их в периодической системе. Соединения с максимальной степенью окисления элемента проявляют исключительно окислительные свойства, а с низшей – восстановительные. легко окисляется на воздухе Mn(OH)2 + 1/2O2 = MnO2 + H2O. Соединения Mn(IV) легко восстанавливаются до Mn (II): MnO2 + 4HCl = MnCl2 + Cl2 + 2H2O, но сильными окислителями окисляется до Mn (VII). Перманганат-ион MnO4 – может быть только окислителем.
Поскольку для d-элементов в пределах подгруппы устойчивость высших степеней окисления сверху вниз растет, то окислительные свойства соединений высшей степени окисления резко падают. Так, соединения хрома (VI) (CrO3, K2CrO4, K2Cr2O7) и марганца(VII) (Mn2O7, KMnO4) – сильные окислители, а WO3, Re2O7 и соли соответствующих им кислот (H2WO4, HReO4) восстанавливаются с трудом.
8. На кислотно-основные свойства гидроксидов d-элементов влияют те же факторы (величина ионного радиуса и заряд иона), что и на гидроксиды p-элементов.
Гидроксиды низших степеней окисления d-элементов обычно проявляют основные свойства, а отвечающие высшим степеням окисления – кислотные. В промежуточных степенях окисления гидроксиды амфотерны. Особенно отчетливо изменение кислотно-основных свойств гидроксидов при изменении степени окисления проявляется в соединенинях марганца. В ряду – – – – свойства гидроксидов меняются от слабого основания через амфотерные и к сильным кислотам и
В пределах одной подгруппы гидроксиды d-элементов одинаковой степени окисления характеризуются увеличением основных свойств при движении сверху вниз. Например, в IIIВ группе Sc(OH)3 – слабое, а La(OH)3 – сильное основание. Элементы IVВ группы Ti, Zn, Hf образуют амфотерные гидроксиды Э(OH)4, но кислотные свойства их ослабевают при переходе от Ti к Hf.
9. Отличительной особенностью переходных элементов является образование фаз переменного состава. Это, во-первых, твердые растворы внедрения и замещения и, во-вторых, соединения переменного состава. Твердые растворы образуются элементами с близкими электроотрицательностями, атомными радиусами и одинаковыми кристаллическими решетками.
Чем больше отличаются элементы по своей природе, тем менее они растворяются друг в друге и тем более склонны к образованию химических соединений. Такие соединения могут иметь как постоянный, так и переменный состав. В отличие от твердых растворов, в которых сохраняется решетка одного из компонентов, для соединений характерно образование новой решетки и новых химических связей. Другими словами, к химическим соединениям относят лишь те фазы переменного состава, которые резко отличаются по строению и свойствам от исходных.
Для соединений переменного состава характерны следующие особенности:
а) Состав этих соединений зависит от способа получения. Так, в зависимости от условий синтеза оксиды титана имеют состав TiO1,2–1,5 и TiO1,9–2,0; карбиды титана и ванадия – TiC0,6–1,0 и VС0,58–1,09, нитрид титана TiN0,45–1,00.
б) Соединения сохраняют свою кристаллическую решетку при значительных колебаниях количественного состава, то есть имеют широкую область гомогенности. Так, TiC0,6–1,0, как следует из формулы, сохраняет решетку карбида титана при недостатке в ней до 40 % атомов углерода.
в) Природа связи в таких соединениях определяется степенью заполнения d-орбиталей металла. Электроны внедренного неметалла заселяют вакантные d-орбитали, что приводит к усилению ковалентности связей. Именно поэтому доля металлической связи в соединениях начальных элементов d-рядов (IV–V групп) понижена.
Наличие ковалентной связи в них подтверждается большими положительными энтальпиями образования соединений, более высокими твердостью и температурой плавления, меньшей электропроводностью по сравнению с образующими их металлами.
Источник: chemistry.ru
Структура, классификация, номенклатура комплексных соединений
Как известно, металлы имеют свойство терять электроны и, тем самым, образовывать катионы. Положительно заряженные ионы металлов могут находиться в окружении анионов или нейтральных молекул, образуя частицы, называемые комплексными и способные к самостоятельному существованию в кристалле или растворе. А соединения, содержащие в узлах своих кристаллов комплексные частицы, называются комплексными соединениями.
Структура комплексных соединений
- Большинство комплексных соединений имеют внутреннюю и внешнюю сферы. Записывая химические формулы комплексных соединений, внутреннюю сферу заключают в квадратные скобки. Например, в комплексных соединениях К[Al(OH)4] и [Ca(NH3)8]Cl2, внутренней сферой являются группы атомов (комплексы) — [Al(OH)4] — и [Ca(NH3)8] 2+ , а внешней сферой — ионы К + и Сl – соответственно.
- Центральный атом или ион внутренней сферы называюткомплексообразователем. Обычно, в качестве комплексообразователей выступают атомы или ионы металлов с достаточным количеством свободных орбиталей – это p-, d-, f- элементы: Cu 2+ , Pt 2+ , Pt 4+ , Ag + , Zn 2+ , Al 3+ и др. Но это может быть и атомы элементов, образующих неметаллы. Заряд комплексообразователя обычно положительный, но также может быть отрицательным или равным нулю и равен сумме зарядов всех остальных ионов. В приведенных выше примерах комплексообразователями являются ионы Al 3+ и Ca 2+ .
- Комплексообразователь окружен и связан сигма-связью с ионами противоположного знака или нейтральными молекулами, так называемыми лигандами. В качестве лигандов в комплексных соединениях могут выступать такие анионы, как F – , OH – , CN – , CNS – , NO2 – , CO3 2– , C2O4 2– и др., или нейтральные молекулы Н2О, NН3, СО, NО и др. В наших примерах это – ионы OH — и молекулы NH3. Количество лигандов в различных комплексных соединениях лежит в пределах от 2 до 12. А само число лигандов (число сигма-связей) называется координационным числом (к.ч.) комплексообразователя. В рассматриваемых примерах к.ч. равно 4 и 8.
- Заряд комплекса (внутренней сферы) определяется как сумма зарядов комплексообразователя и лигандов.
- Внешнюю сферу образуют ионы, связанные с комплексом ионной или межмолекулярной связью и имеющие заряд, знак которого противоположен знаку заряда комплексообразователя. Числовое значение заряда внешней сферы совпадает с числовым значением заряда внутренней сферы. В формуле комплексного соединения записываются они за квадратными скобками. Внешняя сфера может и вовсе отсутствовать, в случае, если внутренняя сфера нейтральна. В приведенных примерах, внешнюю сферу образуют 1 ион K + и 2 иона Cl — соответственно.
Классификация комплексных соединений
Основываясь на различных принципах, комплексные соединения можно классифицировать различными способами:
По электрическому заряду: катионные, анионные и нейтральные комплексы
- Катионные комплексы имеют положительный заряд и образуются если вокруг положительного иона координированы нейтральные молекулы. Например, [Al(H2O)6]Cl3, [Ca(NH3)8]Cl2
- Анионные комплексы имеют отрицательный заряд и образуются, если вокруг положительного иона координированы атомы с отрицательной степенью окисления. Например, К[Al(OH)4], K2[BF4]
- Нейтральные комплексыимеют заряд равный нулю и не имеют внешней сферы. Они могут образоваться при координации вокруг атома молекул, а также при одновременной координации вокруг центрального положительно заряженного иона отрицательных ионов и молекул.
По количеству комплексообразователей
- Одноядерные – комплекс содержит один центральный атом, например, K2[Be(SO4)2]
- Многоядерные — комплекс содержит два и более центральных атомов, например, [CrFe(NH3)6(CN)6]
По типу лиганда
- Гидраты – содержат акво-комплексы, т.е. в качестве лигандов выступают молекулы воды. Например, [Cr(H2O)6]Br3, [Co(H2O)6]Br2
- Аммиакаты – содержат аммин-комплексы, в которых в качестве лигандов выступают молекулы аммиака (NН3). Например, [Zn(NH3)4]Cl2, [Ag(NH3)2]Cl
- Карбонилы – в таких комплексных соединениях, в качестве лигандов выступают молекулы монооксида углерода. Например, [Ni(CO)4], .
- Ацидокомплексы – комплексные соединения, содержащие в качестве лигандов кислотные остатки как кислородсодержащих, так и бескислородных кислот (F – , Cl – , Br – , I – , CN – , NO2 – , SO4 2– , PO4 3– и др., а также ОН – ). Например, K4[Ni(CN)6], Na2[FeCl4]
- Гидроксокомплексы— комплексные соединения, в которых в качестве лигандов выступают гидроксид-ионы: K2[Zn(OH)4], Cs2[Sn(OH)6]
Комплексные соединения могут содержать лиганды, относящиеся к различным классам приведенной классификации. Например: К[Pt(H2O)3Br3], [Cr(NH3)4Br2]Br
По химическим свойствам: кислоты, основания, соли, неэлектролиты:
По количеству мест, занимаемых лигандом в координационной сфере
В координационной сфере лиганды могут занимать одно или несколько мест, т.е. образовывать с центральным атомом одну или несколько связей. По этому признаку различают:
- Монодентатные лиганды – это такие лиганды как молекулы Н2О, NH3, CO, NO и др. и ноны CN − , F − , Cl − , OH − , SCN − , и др.
- Бидентатные лиганды. К такому типу лигандов относятся ионы H2N—CH2—COO − , СО3 2− , SO4 2− , S2O3 2− , молекула этилендиамина H2N—CH2—CH2—H2N (сокращенно en).
- Полидентатные лиганды. Это, например, органические лиганды, содержащие несколько групп — CN или -COOH (ЭДТА). Некоторые полидентантные лиганды способны образовать циклические комплексы, называемые хелатными (например, гемоглобин, хлорофилл и др.)
Номенклатура комплексных соединений
Чтобы записать формулу комплексного соединения, необходимо помнить, что, как и любое ионное соединение, вначале записывается формула катиона, а после – формула аниона. При этом, формулу комплекса записывают в квадратных скобках, где вначале записывают комплексообразователь, затем лиганды.
А вот несколько правил, следуя которым составить название комплексного соединения не составит никакого труда:
4. Если количество лигандов больше единицы, то их число указывают греческими приставками:
2-ди-, 3-три-, 4-тетра-, 5-пента-, 6-гекса-, 7-гепта-, 8-окта-, 9-нона-, 10-дека-.
5. Если же в названии самого лиганда уже присутствует греческая приставка, то название лиганда записывают в скобках и к нему прибавляют приставку типа:
2-бис-, 3-трис-, 4-тетракис-, 5-пентакис-, 6-гексакис-.
Например, соединение [Co(en)3]Cl3 называют – трис(этилендиамин)кобальт(III).
6. Названия комплексных анионов оканчиваются суффиксом – ат
После названия металла в скобках указывают римскими цифрами его степень окисления.
Например, назовем комплексные соединения:
Начнем с лигандов: 4 молекулы воды обозначаются как тетрааква, а 2 хлорид-иона – как дихлоро.
Далее указываем комплексообразователь – это хром и его степень окисления равна III.
Наконец, анионом в данном соединении является хлорид-ион.
Итак, полное название таково – хлорид тетрааквадихлорохрома(III)
Начнем с лигандов: в комплексном анионе содержится 4 лиганда CN — , которые называются тетрациано.
Далее указываем комплексообразователь – это никель и его степень окисления равна нулю.
Так как металл входит в состав комплексного аниона, то он называется никелат(0).
Итак, полное название таково – тетрацианоникелат(0) калия
Рубрики
- ОБЩАЯ ХИМИЯ
- Основные понятия и законы химии
- Строение атомов элементов
- Периодический закон Д.И.Менделеева
- Химическая связь и строение молекул
- Основы термодинамики
- Химическая кинетика и равновесие химической реакции
- Растворы
- Окислительно-восстановительные реакции
- Электролиз
- Коррозия металлов
- Комплексные соединения
- Дисперсные системы. Коллоидные растворы
- I группа (щелочные металлы)
- II группа (щелочноземельные металлы)
- III группа (алюминий)
- IV группа (углерод, кремний)
- V группа (азот, фосфор)
- VI группа (кислород, сера)
- VII группа (галогены)
- Краткая история органической химии
- Теория строения А.М. Бутлерова
- Классификация органических соединений
- Изомерия и номенклатура органических соединений
- Типы химических реакций
- Алканы
- Алкены, алкадиены
- Алкины
- Спирты
- Простые эфиры
- Альдегиды, кетоны
- Карбоновые кислоты и сложные эфиры
Источник: zadachi-po-khimii.ru
Какие бывают батарейки и их маркировка
На прилавках магазинов представлены различные виды батареек. Гальванические могут иметь разные габариты, электрическую ёмкость, химический состав и другие характеристики. Их производством занимаются множество отечественных и зарубежных фирм. Чтобы купить изделие, подходящее именно в данном конкретном случае, нужно разбираться в его характеристиках.
Что такое батарейка
Батарейкой называется гальванический элемент, в котором химическая энергия преобразуется в электрическую. Преобразование происходит за счёт реакции, протекающей между двумя металлическими электродами, погружёнными в раствор электролита. Один вывод батареи является анодом, на нём выделяется отрицательный заряд, другой — катодом, на нём имеется положительный заряд. На минусовом полюсе батареи протекают окислительные химические реакции и возникает избыток свободных электронов. На минусовом — восстановительные.
Характеристика химических источников тока зависит от химического состава электродов и электролитов.
Виды по химическому составу
В зависимости от того, из чего делают батарейки, согласно международному стандарту IEC, маркируются так:
- R — солевые;
- LR — щелочные;
- SR — серебряные;
- CR — литиевые;
- PR — воздушно-цинковые.
У каждого типа батареек есть плюсы и минусы.
Щелочные
Щелочные или алкалиновые элементы питания сейчас являются самыми популярными среди химических источников питания. Их катод сделан из цинка, а анод — из двуокиси марганца. Материал электролита — гидроксид калия, являющийся щелочью.
Эти батарейки обладают большей ёмкостью по сравнению с солевыми, они не боятся отрицательных температур. Хранятся семь лет, так как у них небольшая скорость саморазряда. Стоят такие элементы питания немного выше, чем солевые.
Эти источники электричества используются в приборах с высоким и средним потреблением тока, таких как цифровые фотоаппараты, плееры или детские игрушки с электродвигателем.
Солевые
Первые солевые батарейки были выпущены компанией Eveready в 20-х годах ХХ века. Их катод и анод сделаны из тех же материалов, что и у щелочных элементов питания. В качестве электролита используется хлорид аммония.
Преимущество таких батареек — это низкая цена. Они имеют также ряд недостатков. Такие источники тока не могут долго храниться и быстро разряжаются, даже если их не использовать. При длительной эксплуатации они могут потечь. Не рекомендуется использовать солевые батарейки при отрицательных температурах.
Кроме этого, они не могут работать в устройствах, для работы которых нужна значительная сила тока.
В качестве элементов питания солевые батарейки рекомендуется использовать в устройствах, для работы которых не требуется большая мощность, например, в пультах дистанционного управления к телевизорам, в часах, радиоприёмниках.
Литиевые
Катод литиевых источников питания изготовлен из лития, а в качестве материала для анода могут использоваться диоксид марганца, монофторид углерода или другие материалы. Электролит сделан из органических материалов.
Эти элементы отличаются большой ёмкостью, длительным сроком хранения (до двенадцати лет), небольшим весом, кроме этого, они могут обеспечить стабильное напряжение. Основным недостатком литиевых источников электричества является высокая стоимость.
Литиевые элементы питания используют в мощных устройствах, которые должны работать длительное время. Их рекомендуют встраивать в кардиостимуляторы и другое медицинское оборудование, фотовспышки, портативные колонки и т. д.
К этому типу химических источников тока относятся йодно-литиевые батарейки. Они используют йод как окислитель, а литий как восстановитель. Такие батареи могут быть достаточно мощными. Они долго хранятся и медленно разряжаются.
Также к литиевым относятся батарейки с твёрдым катодом. Их катод изготавливается из лития, а для анода используются сульфиды и оксиды металлов. Материал электролита — растворы солей. Могут работать в широком диапазоне температур и являются достаточно ёмкими. Их главный недостаток — высокая стоимость.
Кроме этого, к литиевым относятся батарейки с жидким окислителем. Они могут работать при температурах от -60 °С. При использовании мощной нагрузки, потребляющей большое количество электрической энергии, они быстро разряжаются. Также стоимость высока. Чаще всего используются в космических исследованиях и военной отрасли.
Серебряные
Отрицательный электрод этих элементов питания сделан из цинка, а положительный — из оксида серебра. Электролитом серебряных батареек является щёлочь, это может быть гидроксид калия или натрия.
Серебряные источники тока долго хранятся, имеют большую электрическую ёмкость и обеспечивают стабильное напряжение. Самый большой их недостаток — это высокая стоимость.
Из-за высокой стоимости серебряные батарейки не используются повсеместно. Чаще всего их применяют в медицинских приборах и военной технике.
Ртутные
В этих источниках питания минусовой полюс батарейки сделан из цинка, а плюсовой — из оксида ртути. В качестве электролита используется 45%-й раствор гидроксида калия.