В современном машиностроении различные виды цветных металлов применяются чрезвычайно широко. Основной причиной этого является то, что по многим своим характеристиками они существенно превосходят черные металлы и сплавы.
Наиболее распространенными цветными металлами являются медь, алюминий, олово, цинк, свинец, кобальт и никель. Чаще всего применение они находят не в чистом виде, а в качестве сплавов, причем самыми популярными из них являются те, которые в своем составе содержат алюминий и медь.
А | Алюминий | М | Медь |
Б | Бериллий | Н | Никель |
Ж | Железо | О | Олово |
К | Кремний | С | Свинец |
Мг | Магний | Ц | Цинк |
Мц | Марганец | Х | Хром |
Медь
Этот металл имеет существенно большую удельную массу, чем сталь и чугун. Меди присуща высокая пластичность, устойчивость к коррозии и отличная электропроводность. Она используется для производства проводов, кабелей, различных токопроводящих деталей и электротехнических изделий. Наиболее широко распространены такие ее марки, как М3, М2, М1 и М0. Что касается обозначения, то, к примеру, согласно ГОСТ марка М3 обозначается, как – М3 ГОСТ 859–78.
Как защитить свои инструменты от ржавчины при помощи меди 🤯 #Автолайфхак
Латунь
Пример записи обозначения латуни в основной надписи: Л63 ГОСТ 15527–70
По ГОСТ 15527–70 в латуни Л63 содержится 63% меди и 37% цинка (включая другие незначительные примеси).
Латунь используемая для производства радиаторных трубок
Из латуни данной марки выпускается проволока, ленты, трубы и листы, а также полосы
Материал для изготовления судовой арматуры и многих деталей, работающих в морской воде
Латунь данной марки используется при выпуске втулок, подшипников, кранов, вентилей и других изделий, у которых поверхности подвергаются усиленному трению
Материал используемый при выпуске гаек нажимных винтов, а также массивных червячных винтов
Бронза
К категории бронз относятся все сплавы на основе меди, в которых легирующими элементами являются отличные от цинка металлы.
Согласно принятым нормам и стандартам, бронза маркируется буквами Бр , после которых указывается обозначение легирующих элементов и численные значения их процентного содержания в сплаве.
Бронзы по сравнению с латунью имеют большую устойчивость к коррозии, лучшие антифрикционные свойства, а также повышенные показатели прочности.
Эти сплавы демонстрируют высокую стойкость к воздействию углекислых сред, растворов большинства органических кислот, а также морской воды.
Пример записи оловянной бронзы в основной надписи: БрОЦСНЗ–7–5–1 ГОСТ 613–79
Пример записи безоловянной бронзы в основной надписи: БрАЖН 10–4–4 ГОСТ 18175–78
Химия 9 класс: Медь
Если рассмотреть пример с безоловянной бронзой БрАЖН 10–4–4, то в ней содержится 10% алюминия, 4% железа и 4% никеля. На остаток (82%) приходится медь и незначительные примеси.
Из данной бронзы изготавливают проволоку, полосы, прутки, пружины и детали подшипников
Сферой применения деформируемой оловянистой бронзы данной марки является изготовление трубок, широко используемых в контрольно-измерительной аппаратуре
Материал для производства различных деталей узлов и агрегатов, применяемых в химической промышленности
Из этого материала изготавливаются различные ленты и полосы для прокладок частей подшипников и втулок
Бронза для изготовления арматуры способной работать под давлении пара до 2,5 МН/м 2 (25 кг/см 2 ) в морской воде
Бронза для изготовления арматуры работающей в пресной воде при давлении пара до 2,6 МН/м 2 (25 кг/см 2 )
Материал для изготовления антифрикционных деталей
Материал для изготовления деталей тракторов
Материал для производства тракторных деталей
Медь 29 — элемент таблицы Менделеева
Медь — элемент побочной подгруппы первой группы, четвертого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum).
Атомный номер — 29
Атомная масса — 63,546
Плотность, кг/м³ — 8960
Температура плавления, °С — 1083
Теплоемкость, кДж/(кг·°С) — 0,385
Электроотрицательность — 1,9
Ковалентный радиус, Å — 1,17
1-й ионизац. потенциал, эв — 7,73
Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2. Иногда медь встречается в самородном виде, масса отдельных скоплений может достигать 400 тонн.
Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах — медистые песчаники и сланцы. Наиболее известные из месторождений такого типа — Удокан в Читинской области, Джезказган в Казахстане, меденосный пояс Центральной Африки и Мансфельд в Германии.
Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,4 до 1,0 %. Физические свойства меди
Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра). Имеет два стабильных изотопа — 63Cu и 65Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.
Цвет Меди красный, в изломе розовый, при просвечивании в тонких слоях зеленовато-голубой. Металл имеет гранецентрированную кубическую решетку с параметром а = 3,6074 Å; плотность 8,96 г/см3 (20 °С). Атомный радиус 1,28 Å; ионные радиусы Cu+ 0,98 Å; Сu2+ 0,80 Å; tпл1083 °С; tкип 2600 °С; удельная теплоемкость (при 20 °С) 385,48 дж/(кг·К), т.е. 0,092 кал/(г·°С).
Наиболее важные и широко используемые свойства Меди: высокая теплопроводность — при 20 °С 394,279 вт/(м·К.), то есть 0,941 кал/(см·сек·°С); малое электрическое сопротивление — при 20 °С 1,68·10-8 ом·м. Термический коэффициент линейного расширения 17,0·10-6. Давление паров над Медью ничтожно, давление 133,322 н/м2 (т.е. 1 мм рт.ст.) достигается лишь при 1628 °С.
Медь диамагнитна; атомная магнитная восприимчивость 5,27·10-6. Твердость Меди по Бринеллю 350 Мн/м2 (т. е. 35 кгс/мм2); предел прочности при растяжении 220 Мн/м2 (т. е. 22 кгс/мм2); относительное удлинение 60%, модуль упругости 132·103 Мн/м2(т.е. 13,2·103 кгс/мм2). Путем наклепа предел прочности может быть повышен до 400-450 Мн/м2, при этом удлинение уменьшается до 2% , а электропроводность уменьшается на 1-3.
Источник: tablica-mendeleeva.ru
Марки меди – характеристики, маркировка и ее расшифровка
Марки меди широко представлены в различных отраслях промышленности: этот цветной металл благодаря своим уникальным характеристикам является одним из наиболее распространенных. Все марки этого металла отличают высокая пластичность и коррозионная устойчивость при эксплуатации в различных средах, за исключением аммиака и сернистых газов.
Круг медный Ø 30
Современная промышленность выпускает медные заготовки в виде листового материала, труб, проволоки, прутков и шин. Различают бескислородную (М0) и раскисленную (М1) медь, изделия из которых нашли широкое применение в электротехнической, электронной и электровакуумной промышленности. В бескислородных марках О2 содержится в пределах 0,001%, в раскисленных — 0,01%.
Примеси в медных сплавах
Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.
Образующие с медью твердые растворы
К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.
Не растворяющиеся в меди примеси
Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.
Примеси, образующие с медью хрупкие химические соединения
К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. Содержание серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.
Марки меди и их применение
Стандарты для медных сплавов
Государственными стандартами оговариваются правила маркировки меди и ее сплавов, обозначение которых соответствует определенной структуре.
О том, что перед нами одна из марок меди, свидетельствует буква «М» в ее обозначении. После начальной буквы в маркировке меди и ее сплавов следуют цифры (от 0 до 3), условно обозначающие массовую долю основного металла в их составе (например, медь М3). После цифр следуют прописные буквы, по которым можно определить, каким способом получили данную марку меди. Из технологических способов получения меди различают следующие:
Примеры маркировок таких марок и сплавов меди могут выглядеть следующим образом: М2р, М1б.
Химический состав меди ГОСТ 859-2014
Целый ряд марок меди, отличающихся уникальными характеристиками, активно используют в различных отраслях промышленности.
- М0 – эта марка применяется для производства токопроводящих элементов и для добавления в сплавы, отличающиеся высокой чистотой.
- М1 — из этой марки также производят токопроводящие элементы, прокат различного профиля, бронзы, детали для криогенной техники, электроды для сварки меди и чугуна, проволоку и прутки (применяемые для выполнения сварочных работ под слоем флюса и в среде инертных газов), расходные материалы для выполнения газовой сварки деталей из меди, не испытывающих значительных нагрузок при эксплуатации.
- М2 – данная марка позволяет получать изделия, хорошо обрабатываемые давлением. Медь М2 также используют для деталей криогенной техники.
- МЗ — детали из данной марки металла производят прокатным методом.
Пространственное распределение запасов меди в России
ГОСТ 859-2001, в котором оговаривались требования и характеристики медных сплавов, в 2014 году был заменен новым государственным стандартом (859-2014), что зафиксировано соответствующим Приказом Федерального агентства по техническому регулированию и метрологии. Новый стандарт по основным своим пунктам практически идентичен ГОСТу 859-2001.