Йод, подобно другим ценным элементам, добывают в промышленных масштабах. Уровень мировой добычи йода приближается к уровню добычи серебра и ртути. Следует отметить, что в виде простого вещества йод практически не встречается, в основном его добывают из химических соединений. Существуют следующие способы добычи йода:
1. Переработка природных накопителей йода — морских водорослей и получение йода из их золы.
В тонне высушенной морской капусты (ламинарии) содержится до 5 кг йода, в то время как в тонне морской воды его всего лишь 20-30 мг. До 60-х годов XIX столетия водоросли были единственным источником промышленного получения йода. В России вплоть до 1915 года своего йода не было, его завозили из-за границы.
Первый йодный завод был построен именно в 1915 году в Екатеринославе (сейчас Днепропетровск). Получали йод из черноморской водоросли филлофоры. За годы Первой мировой войны на этом заводе быль добыто около 200 кг йода.
2. Получение йода из отходов селитряного производства — маточных растворов чилийской (натриевой) селитры, содержащей до 0,4 % йода в виде йодата и йодида натрия.
Этот способ начал применяться с 1868 года и в силу дешевизны сырья и простоты получения микроэлемента получил широкое распространение в мире.
3. Получение йода из природных йодсодержащих растворов, например воды некоторых соленых озер или попутных (буровых) нефтяных вод, содержащих обычно 20-40 мг/л йода в виде йодидов (местами 1 литр этих вод содержит свыше 100 мг йода).
В нашей стране уже в годы советской власти йод стали получать из подземных и нефтяных вод Кубани, где он был обнаружен русским химиком А. Л. Потылицыным еще в 1882 году. Позже подобные воды были открыты в Туркмении и Азербайджане. В настоящее время нефтяные буровые воды служат основным сырьем для промышленного получения йода в России.
Но йода в подземных водах и попутных водах нефтедобычи очень мало. В этом и заключалась основная трудность при создании экономически оправданных промышленных способов его получения. Нужно было найти «химическую приманку», которая бы образовывала с йодом довольно прочное соединение и накапливала его.
Первоначально такой «приманкой» оказался крахмал, потом соли меди и серебра, которые связывали йод в нерастворимые соединения. Затем использовали керосин — йод хорошо растворяется в нем. Но все эти способы оказались дорогостоящими, а порой и огнеопасными.
В 1930 году советский инженер В. П. Денисович разработал угольный метод извлечения йода из нефтяных вод, и этот метод довольно долго был основой советского йодного производства. В 1 кг угля за месяц накапливалось до 40 г йода.
4. Ионитный способ, основанный на избирательном поглощении йода особыми химическими соединениями — высокомолекулярными ионообменными смолами.
М. Beлдaнoвa, A. Cкaльный
Дополнительная информация:
- Источники поступления йода в организм человека
- Причины йодного дефицита
- Вся информация по этому вопросу
Источник: www.medeffect.ru
ОПРЕДЕЛЕНИЕ СЕРЕБРА В ДОМАШНИХ УСЛОВИЯХ С ПОМОЩЬЮ ЙОДА!!!
Уравнение реакции серебра с йодом
Иодида серебра представляет собой неорганическое соединение с формулой Ag I . Соединение представляет собой ярко-желтое твердое вещество, но образцы почти всегда содержат примеси металлического серебра, которые дают серый цвет. Загрязнение серебром возникает из-за высокой светочувствительности AgI . Это свойство используется в фотографии на основе серебра . Йодид серебра также используется в качестве антисептика и при посеве облаков .
Состав
Структура йодида серебра зависит от температуры:
- Ниже 420 К наиболее стабильна β-фаза AgI со структурой вюрцита . Эта фаза встречается в природе как минерал йодаргирит .
- Выше 420 K α-фаза становится более стабильной. Этот мотив представляет собой объемно-центрированную кубическую структуру, в которой центры серебра случайным образом распределены между 6 октаэдрическими, 12 тетраэдрическими и 24 тригональными узлами. При этой температуре ионы Ag + могут быстро перемещаться через твердое тело, обеспечивая быструю ионную проводимость . Переход между β- и α-формами представляет собой плавление серебряной (катионной) подрешетки. Энтропии плавления для альфа-AgI составляет примерно половину , что для хлорида натрия (типичный ионные твердое вещество). Это можно объяснить, если предположить, что кристаллическая решетка AgI уже «частично расплавилась» при переходе между α и β полиморфами.
- Метастабильная γ-фаза также существует ниже 420 К со структурой цинковой обманки .
Приготовление и свойства
Иодид серебра получают реакцией раствора йодида (например, йодида калия ) с раствором ионов серебра (например, нитрата серебра ). Быстро выпадает желтоватое твердое вещество . Твердое вещество представляет собой смесь двух основных фаз. Растворение AgI в иодистоводородной кислоте с последующим разбавлением водой осаждает β-AgI. Альтернативно, растворение AgI в растворе концентрированного нитрата серебра с последующим разбавлением дает α-AgI. Если приготовление не проводится при отсутствии солнечного света, твердое вещество быстро темнеет, а свет вызывает восстановление ионного серебра до металлического. Светочувствительность зависит от чистоты образца.
Посев облаков
Кристаллическая структура из бета-AgI подобен тому из льда , что позволяет ему вызвать замораживание с помощью процесса , известного как гетерогенной нуклеации . Ежегодно на посев облаков расходуется около 50 000 кг, при этом на каждый посевной опыт требуется 10–50 граммов. (см. также Project Stormfury , Operation Popeye )
Безопасность
Чрезмерное воздействие может привести к аргирии , характеризующейся локальным обесцвечиванием тканей тела.
Йодид серебра I
Йодид серебра (Йодистое серебро) — неорганическое соединение с формулой AgI. Это жёлтое вещество, чувствительное к действию света, используется в фотографии, находит применение в качестве антисептика в медицине, а также в качестве дождеобразующего реагента.
Йодид серебра практически не растворяется в воде благодаря своей кристаллической структуре. Она существует в трёх известных разновидностях, меняющихся с изменением температуры.
Одна из них очень схожа по строению с таковой у льда, поэтому введение небольшого количества йодида вызывает образование очагов конденсации в облаках, тем самым вызывая выпадение осадков. По некоторым оценкам, для этой цели используется около 50 тонн вещества в год — при том, что однократно расходуется от 10 до 50 граммов.
Йодид серебра токсичен, при контакте или вдыхании концентрированных паров возможно отравление. Симптомы: головная боль, слабость, анемия, потеря веса, раздражение слизистых оболочек. При длительном контакте или вдыхании может развиться аргирия.
Получение
При комнатной температуре, воздействием йодоводородом или йодидом калия или йодидом натрия на нитрат серебра, йодид серебра выпадет в осадок.
AgNO3 + HI ⟶ AgI ↓ + HNO3 , AgNO3 + KI ⟶ AgI ↓ + KNO3 , AgNO3 + NaI ⟶ AgI ↓ + NaNO3
Медная пластина, покрытая тонким слоем серебра, тщательно отполированная до зеркального блеска, помещается в специальный ящик, полированной стороной вниз. Снизу ящика под пластиной помещается чашка с кристаллическим йодом. При подогреве йод начинает возгоняться и пары его сублимируются на полированной серебряной пластине. Йод вступает в реакцию с серебром, и пластина покрывается тонким слоем йодистого серебра, становясь светочувствительной. Дагеротипия
КАЧЕСТВЕННЫЕ РЕАКЦИИ НА ХЛОРИД-, БРОМИД-, ЙОДИД-ИОНЫ.
ЙОД МОЛЕКУЛЯРНЫЙ.
а) на хлорид-ион – действие раствора нитрата серебра → образуется белый творожистый осадок хлорида серебра:
Осадок нерастворим в азотной кислоте, но легко растворим в аммиаке с образованием комплексного соединения:
При прибавлении к раствору хлорида диаммина серебра концентрированной серной кислоты осадок снова выделяется:
Реакция является фармакопейной.
AgCl – также растворим в тиосульфате натрия.
Т.В.: к 2 каплям раствора NaCl прибавляют 2 капли раствора AgNO3.
К раствору с выпавшим осадком прибавляют концентрированный раствор аммиака до полного растворения осадка. Полученный раствор подкисляют концентрированной азотной кислотой и наблюдают выпадение осадка.
1) действие нитрата серебра → желтовато-белый осадок бромида серебра:
Осадок не растворяется в HNO3, плохо растворим в аммиаке в отличие от хлорида серебра и хорошо растворяется в растворе тиосульфата натрия.
Реакция является фармакопейной.
Т.В.: К 4 каплям раствора NaBr прибавляют 4 капли раствора AgNO3. Раствор с осадком делят на две части. К одной части прибавляют раствор тиосульфата натрия, а к другой – концентрированный раствор аммиака и сравнивают растворение осадка AgBr в этих реактивах.
Хлорная вода, прибавленная к раствору бромида, выделяет из него свободный бром, который растворяется в сероуглероде или хлороформе, окрашивая слой растворителя в оранжевый цвет:
При большом избытке хлорной воды окраска исчезает вследствие образования BrCl, имеющего более светлую окраску.
Т.В. К 5 каплям раствора NaBr прибавляют 1 мл хлороформа, 1-2 капли разбавленной H2SO4 и затем по каплям, при энергичном встряхивании 2-3 капли хлорной воды. Наблюдается окрашивание слоя хлороформа.
1) нитрат серебра выделяет из иодидов светло-желтый творожистый осадок серебра:
Осадок не растворяется в азотной кислоте и растворе аммиака и плохо растворяется в растворе тиосульфата натрия.
Реакция является фармакопейной.
Т.В.: К раствору KI прибавляют немного раствора AgNO3. Проверяют растворение выпавшего осадка в растворе натрия тиосульфата.
2) Хлорная вода выделяет из растворов иодидов свободный йод, который окрашивает сероуглерод или хлороформ в красновато-фиолетовый цвет, а раствор крахмала – в синий.
Т.В.: К 5 каплям раствора NI (KI) прибавить 1 мл хлороформа, 2-3 капли разбавленной H2SO4 и затем по каплям, при энергичном взбалтывании 2-3 капли хлорной воды. Наблюдают окрашивание слоя хлороформа в красновато-фиолетовый цвет. В другую пробирку наливают 1 каплю раствора KI, 1 каплю хлорной воды и 2 капли раствора крахмала. Наблюдают изменение окраски.
3) Хлорид железа (III), конц. H2SO4 и некоторые другие окислители окисляют ион I — до свободного йода; например:
2 FeCl3 + 2 KI = 2 FeCl2 + 2 KCl + I2
Реакция является фармакопейной.
Т.В.: На фильтровальную бумагу в одном месте последовательно по 1 капле наносят растворы KI, HCl, FeCl3. Наблюдают появление бурого пятна, синеющего от капли крахмала.
г) На йод молекулярный → действие крахмала → синее окрашивание.
Выводы: а) на хлорид-ион – действие раствора нитрата серебра → образуется белый творожистый осадок хлорида серебра:
Осадок нерастворим в азотной кислоте, но легко растворим в аммиаке с образованием комплексного соединения:
При прибавлении к раствору хлорида диаммина серебра концентрированной серной кислоты осадок снова выделяется:
Реакция является фармакопейной.
AgCl – также растворим в тиосульфате натрия.
Т.В.: к 2 каплям раствора NaCl прибавляют 2 капли раствора AgNO3.
К раствору с выпавшим осадком прибавляют концентрированный раствор аммиака до полного растворения осадка. Полученный раствор подкисляют концентрированной азотной кислотой и наблюдают выпадение осадка.
1) действие нитрата серебра → желтовато-белый осадок бромида серебра:
Осадок не растворяется в HNO3, плохо растворим в аммиаке в отличие от хлорида серебра и хорошо растворяется в растворе тиосульфата натрия.
Реакция является фармакопейной.
Т.В.: К 4 каплям раствора NaBr прибавляют 4 капли раствора AgNO3. Раствор с осадком делят на две части. К одной части прибавляют раствор тиосульфата натрия, а к другой – концентрированный раствор аммиака и сравнивают растворение осадка AgBr в этих реактивах.
Хлорная вода, прибавленная к раствору бромида, выделяет из него свободный бром, который растворяется в сероуглероде или хлороформе, окрашивая слой растворителя в оранжевый цвет:
При большом избытке хлорной воды окраска исчезает вследствие образования BrCl, имеющего более светлую окраску.
Т.В. К 5 каплям раствора NaBr прибавляют 1 мл хлороформа, 1-2 капли разбавленной H2SO4 и затем по каплям, при энергичном встряхивании 2-3 капли хлорной воды. Наблюдается окрашивание слоя хлороформа.
1) нитрат серебра выделяет из иодидов светло-желтый творожистый осадок серебра:
Осадок не растворяется в азотной кислоте и растворе аммиака и плохо растворяется в растворе тиосульфата натрия.
Реакция является фармакопейной.
Т.В.: К раствору KI прибавляют немного раствора AgNO3. Проверяют растворение выпавшего осадка в растворе натрия тиосульфата.
2) Хлорная вода выделяет из растворов иодидов свободный йод, который окрашивает сероуглерод или хлороформ в красновато-фиолетовый цвет, а раствор крахмала – в синий.
Т.В.: К 5 каплям раствора NI (KI) прибавить 1 мл хлороформа, 2-3 капли разбавленной H2SO4 и затем по каплям, при энергичном взбалтывании 2-3 капли хлорной воды. Наблюдают окрашивание слоя хлороформа в красновато-фиолетовый цвет. В другую пробирку наливают 1 каплю раствора KI, 1 каплю хлорной воды и 2 капли раствора крахмала. Наблюдают изменение окраски.
3) Хлорид железа (III), конц. H2SO4 и некоторые другие окислители окисляют ион I — до свободного йода; например:
2 FeCl3 + 2 KI = 2 FeCl2 + 2 KCl + I2
Реакция является фармакопейной.
Т.В.: На фильтровальную бумагу в одном месте последовательно по 1 капле наносят растворы KI, HCl, FeCl3. Наблюдают появление бурого пятна, синеющего от капли крахмала.
г) На йод молекулярный → действие крахмала → синее окрашивание.
а)на хлорид-ион – действие раствора нитрата серебра → образуется белый творожистый осадок хлорида серебра;осадок нерастворим в азотной кислоте, но легко растворим в аммиаке с образованием комплексного соединения хлориддиаммин серебра.
При прибавлении к раствору хлориддиаммина серебра концентрированной серной кислоты осадок снова выделяется:
Реакция является фармакопейной.
1) действие нитрата серебра → желтовато-белый осадок бромида серебра;осадок не растворяется в HNO3, плохо растворим в аммиаке в отличие от хлорида серебра и хорошо растворяется в растворе тиосульфата натрия.
Реакция является фармакопейной.
Хлорная вода, прибавленная к раствору бромида, выделяет из него свободный бром, который растворяется в сероуглероде или хлороформе, окрашивая слой растворителя в оранжевый цвет.
1) нитрат серебра выделяет из иодидов светло-желтый творожистый осадок серебра.
Осадок не растворяется в азотной кислоте и растворе аммиака и плохо растворяется в растворе тиосульфата натрия.
Реакция является фармакопейной.
2) Хлорная вода выделяет из растворов иодидов свободный йод, который окрашивает сероуглерод или хлороформ в красновато-фиолетовый цвет, а раствор крахмала – в синий.
3) Хлорид железа (III) окисляет ион I — до свободного йода;
Реакция является фармакопейной.
г) На йод молекулярный → действие крахмала → синее окрашивание.
Источник: ollimpia.ru
Как получить йод серебра
Йод – химический элемент, не имеющий значительного распространения в литосфере. Играет важную роль в протекании жизненно важных процессов в организме человека и животных. Является компонентом (действующим веществом) специальных йодсодержащих комплексных удобрений, добавляется в минеральные удобрения. Применяется для обработки семян и некорневых подкормок.
Агрохимикаты
По-английски
Раздел на сайте
В морских водорослях содержится до 1% йода, и это, учитывая химическое разнообразие структурных компонентов живой ткани, весьма немало. Именно этот факт позволил французскому химику Бернару Куртуа в 1811 году получить из золы водорослей новый элемент – йод. Своим названием галоген обязан собственному свойству возгоняться с образованием фиолетовых паров: слово «иодес» в переводе с греческого означает «фиолетовый».
В наибольшей степени йод известен нам в качестве медицинского средства. Его спиртовая настойка применяется как антисептик для обработки свежих ран, йодид калия назначают в качестве средства профилактики эндемического зобы, он же является лекарством при дефицитных состояниях, а йод, меченый радиоактивной меткой, используется для лечения аденом и рака щитовидной железы. Необходимость в йоде настолько высока, что это вещество способно беспрепятственно проникать через неповрежденную кожу и практически полностью усваиваться из поглощаемой пищи.
Физические и химические свойства
Йод (Iodum), I – химический элемент главной подгруппы VII группы периодической системы Менделеева. Атомный номер – 53, атомная масса – 126,904. Природный йод состоит из одного стабильного изотопа. Галоген. В нормальных условиях имеет вид кристаллов черно-серого цвета с фиолетовым металлическим блеском. Обладает резким запахом.
Температура кипения – 113,6°C, температура плавления – 185,5°C.
Вследствие большой химической активности в природе йод находится исключительно в связанном состоянии.
При нагревании при атмосферном давлении йод сублимируется (возгоняется) и превращается в пары фиолетового цвета со специфическим запахом. При охлаждении эти пары кристаллизуются сразу, минуя жидкое состояние.
Молекулы простых веществ, образованные атомами йода, как и у всех прочих галогенов, двухатомны.
Йод малорастворим в воде, значительно лучше растворяется в органических растворителях: сероуглероде, этиловом спирте, диэтиловом эфире, бензоле, хлороформе.
Как свободный галоген, элемент проявляет высокую химическую активность и вступает во взаимодействие со всеми простыми веществами. Быстро с выделением большого количества теплоты протекает реакция взаимодействия галогенов с металлами.
Йод – энергичный окислитель. Это свойство проявляется и при взаимодействии со сложными веществами.
Концентрация йода в большинстве горных пород варьирует в пределах от 0,1 до 6 мг/кг. Максимальное количество этого элемента содержится в богатых органическим веществом сланцах. Йод образует мало самостоятельных минералов, но присутствует во многих в виде изоморфных примесей. К распространенным минералам йода относятся йодиды серебра, меди, а также полигалиды, йодаты и периодаты.
Соединения йода легкорастворимы, и при выветривании горных пород данный элемент высвобождается в значительных количествах. Йод интенсивно выносится поверхностными водами в океаны и моря, однако активная сорбция углеродом, глинами и органикой оказывает значительное воздействие на круговорот йода в природе.
Основным источником поступления и накопления вещества в почвах является йод атмосферы. В атмосферу йод поступает в основном из морей и океанов. Этому способствуют не только химические процессы, но и разбрызгивание и распыление воды океанов и морей. Поскольку водная поверхность занимает почти 70 % поверхности земного шара, то постоянное поступление йода в атмосферу и выпадение его на поверхность суши в составе осадков имеет большое значение в процессе его миграции в природе.
Присутствие йода в почвах в виде минералов не установлено. Он обнаруживается в почвенных горизонтах в основном в составе органических веществ. В связи с этим йод аккумулируется в верхних почвенных горизонтах. Установлено, что значительная его часть находится в почве в связанных формах, сорбированных гумифицированной или свежей органикой и глинами, или входит в кристаллические решетки минералов.
Почвы значительно отличаются друг от друга по содержанию йода. Его количество в почвах колеблется от 0,1 до 50 мг/кг. Среднее значение – 5 мг/кг. Почвы содержат в 20–30 раз больше йода по сравнению с собственными материнскими породами.
Содержание йода зависит и от механического состава почвы. Установлено, что легкие пески и супеси значительно беднее тяжелых почв – глин и суглинков. В связи с этим, йодная недостаточность встречается в зонах распространения почв, легких по механическому составу.
Чем больше органической составляющей содержится в почве, чем больше в ней коллоидной и мелкой фракции, тем богаче она йодом. Кислые почвы беднее йодом по сравнению с менее кислыми либо нейтральными. Это происходит по причине вымывания йода из почвы в кислой среде.
Распределение по профилю отличается следующей закономерностью: верхний слой более богат йодом, а материнская порода содержит гораздо меньшее количество данного элемента. Исключение – осадочные породы морского происхождения, как правило, содержащие очень большое количество йода.
Подзолы, серые лесные, сероземные почвы содержат малое количество йода.
Горные и равнинные почвы одной и той же местности содержат разное количество йода. Больше его в равнинных почвах.
Пойменные почвы содержат йода больше, чем в почвы водораздельных пространств.
Роль в растении
Биохимические функции
На сегодняшний день считается, что йод не является жизненно необходимым элементом для развития растений. Однако в литературе приводятся многочисленные примеры его благотворного влияния на их рост. Это явление пока не имеет точного объяснения.
Скорее всего, йод принимает участие в регулировании деятельности ферментных систем.
Стимулирующее действие йода на растения отмечается при его содержании 0,1 мг/кг в питательном растворе. Токсический эффект наблюдался при концентрации йода 0,5–1,0 мг/кг.
Как уже указывалось, наиболее доступны растениям растворимые формы галогена. Именно поэтому морские виды растений содержат гораздо большие концентрации йода. Его наличие в килограмме сухой массы морских растений варьирует от 53 до 8800 мг.
Механизм поглощения йода растениями изучен плохо. Установлено, что органические формы элемента растениями не усваиваются. Данный галоген становится доступным растительности только после разложения органических веществ бактериями.
Растения обладают способностью адсорбировать йод из атмосферы. Атмосферный йод является важным источником поступления данного элемента в растения.
Недостаток (дефицит) йода.
Считается, что йод не является жизненно необходимым элементом для растений, и на его недостаток растения явно не реагируют.
Роль йода в жизни животных и человека
Наличие и концентрация йода в растениях важны для человека и животных. Он входит в состав тироксина – гормона щитовидной железы, который играет важную роль в регуляции окислительно-восстановительных процессов в клетках живого организма. Суточная потребность человека в йоде – 100–200 мг.
Йодная недостаточность у человека и животных в настоящее время распространена очень широко и выражается в заболевании эндемическим зобом (болезнь щитовидной железы, возникающая при недостатке йода).
Избыток йода
Данных о влиянии избытка йода в результате техногенного загрязнения также немного. Внесение в почву большого количества золы бурых водорослей вызывает симптомы йодовой токсичности, сходные с таковыми у брома: краевой хлороз взрослых листьев, изменение окраски молодых листовых пластинок до темно-зеленой.
Вегетационные опыты с томатами и гречихой на различных почвах показали, что доза йода в 1,1 кг/га не влияла на растения, а доза в 11 кг/га на некоторых почвах оказалась токсичной.
При поступлении избытка йода в организм человека ослабляется синтез йодистых соединений щитовидной железы.
Содержание йода в удобрениях, (мг/кг), согласно данным: | |
Удобрение | Содержание йода |
Сернокислый аммоний | 0 — 350 |
Цианамид кальция | 10 — 40 |
Суперфосфат | 0 — 40200 |
Томасшлак | 0 — 360 |
Фосфоритная мука | 150 – 280 000 |
Хлористый калий | Следы – 30 |
Сернокислый калий | Следы — 25 |
Сильвинит | 0 – 133 |
Карналит | 0 – 5000 |
Каинит | 0 – 900 |
Навоз | 40 – 1000 |
Торф | 1200 – 31700 |
Зола торфяная | 800 – 9700 |
Зола древесная | 62 — 86 |
Известняки | 0 — 20370 |
Доломиты | 14 — 420 |
Йод получают окислением йодоводорода (НI) различными окислителями. В промышленности его получают из бромидов и йодидов, действуя на их растворы хлором.
Соединения йода имеются в морской воде, но в очень малых количествах. Поэтому непосредственное выделение их из воды довольно затруднительно. Существуют некоторые водоросли, накапливающие йод в своих тканях. Их зола служит сырьем для получения данного галогена.
Значительное количество йода (10–50 мг/л) содержится в подземных буровых водах. В России именно они являются основным источником получения йода. Встречается этот элемент в виде солей калия – иодата KIO3 и периодата KIO4. Данные соединения сопутствуют залежам нитрата натрия (селитры) в Чили и Боливии.
При применении йодсодержащих удобрений наиболее экономически оправдана предпосевная обработка семян, а для обогащения урожая йодом – некорневая обработка.
В отдельных регионах, например, Забайкалье, рекомендовано в первую очередь применение йодистого калия, как отдельно, так и в комплексе с сернокислым цинком (2:1) на серых лесных, каштановых и лугово-аллювиальных почвах, на посевах кормовых культур.
Эффект от применения йодсодержащих удобрений
Исследованиями, проведенными в 1930–1936 гг. в Уманском с/х институте, было подтверждено, что предпосевная обработка семян различных культур раствором йодного калия заметно обогащает пищевые продукты йодом.
Сахарная свекла на среднеподзолистом суглинке под влиянием йодистого калия повышала урожай корней и увеличивала их сахаристость. Морские водоросли, содержащие йод, также увеличивали урожай корней данного корнеплода.
Удобрения , содержащие Йод
Показать все удобрения »
Хлопчатник, обработанный йодиднафтенатом (отходы йодного завода), быстрее растет, и увеличивается его урожайность.
Томат, лук, капуста, огурец. Под влиянием йодистого калия отмечено повышение урожая в результате внекорневой подкормки. Не меньший эффект оказывает и предпосевная обработка семян.
Удобрения, содержащие йод, значительно увеличивают концентрацию йода в растениях. Например, использование йодистого калия в смеси с карбоаммофоской, а также карбоаммофоски, промышленным способом обогащенной йодистым калием (KI – 300 г/га), привело к увеличению содержания йода в сене клевера-тимофеевки в 3 раза, а в овсе – в 5–6 раз.
Внесение слабого водного раствора элементарного йода в почву и опрыскивание листьев данным раствором оказывает положительное влияние на ускорение развития различных видов растений и повышает их устойчивость к болезням и вредителям.
Установлено, что йод предохраняет салат от проволочника, томаты – от мозаичной болезни и корневой гнили, гладиолусы и львиный зев – от ржавчины, хризантемы становятся устойчивыми к воздействию нематод.
Кроме того, обработка почвы перед посевом раствором йода и последующее опрыскивание рассады этим же раствором один раз в две недели приводит к более раннему созреванию томатов, салата и огурцов.
Создано: 5 декабря 2020 в 00:00 Обновлено: 06.10.2022 г.
(c) Справочник AgroXXI
Йод – химический элемент, не имеющий значительного распространения в литосфере. Играет важную роль в протекании жизненно важных процессов в организме человека и животных. Является компонентом (действующим веществом) специальных йодсодержащих комплексных удобрений, добавляется в минеральные удобрения. Применяется для обработки семян и некорневых подкормок. |strip_tags»/>
Интересна тема? Подпишитесь на персональные новости в ДЗЕН или Pulse или VK.Новости.
Источник: www.agroxxi.ru