Какая химическая связь у алмаза

Решетку алмазного типа имеют важнейшие элементарные полупроводники, принадлежащие к IV группе периодической системы элементов: германий, кремний, а также серое олово.

Все связи в структуре алмаза направлены по и составляют друг с другом 109  28’. Каждый атом окружен четырьмя такими же атомами, располагающимися по вершинам тетраэдра (рис.7).

В результате пространственная решетка формируется в форме, фрагмент которой приведен на рис.8. В ней можно выделить кубическую элементарную ячейку,

представленную на рис.9. Такая ячейка не является примитивной. Внутри ее находятся четыре атома, связанные с атомами, расположенными на углах куба, а также в середине его граней. На одну элементарную ячейку приходится 8 атомов: в вершинах куба 81/8, на гранях 61/2 и внутри ячейки четыре. Координаты базиса [[000]], [[0,1/2,1/2]], [[1/2,0,1/2]], [[1/2,1/2,0]], [[1/4,1/4,1/4]], [[1/4,3/4,3/4]], [[3/4,1/4,3/4]], [[3/4,3/4,1/4]].

Типы Химических Связей — Как определять Вид Химической Связи? Химия 9 класс

На рис.8 ясно видно, что структура, являясь однородной, должна быть анизотропной, т.е. ее свойства в различных направлениях неодинаковы. Так, в структуре четко видны шестисторонние «каналы» в направлениях , проходящие насквозь. По этим каналам особо легко идет диффузия примесей в кристалле.

Другие проявления анизотропных свойств полупроводников типа алмаза обсуждаются ниже. Их основные характеристики приведены в табл. 1.

Характеристики элементарных полупроводников

со структурой типа алмаза

Параметр решетки, Å

Температура плавления,  С

Ширина запрещенной зоны, эВ

4. Связь свойств кристаллов кремния со структурой его кристаллической решетки

В кристаллографии существует закон, по которому важнейшие по развитию и частоте встречаемости грани кристалла совпадают с плоскостями, наиболее густо покрытыми атомами. Эти же грани проще всего выявляются анизотропными травителями. Этим же объясняется неодинаковая твердость кристалла на разных гранях и по разным направлениям. Количество атомов, приходящихся на единицу поверхности плоской сетки, называются ее плотностью. Важнейшие грани кристалла совпадают с плотнейшими плоскими сетками.

Кроме плотности сеток иногда учитывают также интенсивность сил связи между атомами в различных направлениях, приходящихся на единицу площади сетки. Как правило, выводы об анизотропных свойствах кристалла, получающиеся при обоих подходах, непротиворечивы.

Проанализируем с этой точки зрения структуру кристалла кремния, соответствующую структуре алмаза. На рис.10 представлена элементарная ячейка в виде куба, выделенная в КР кремния. По существу она не отличается от кубической ячейки, изображенной на рис.9, но в ней опущены обозначения сязей между атомами и она более удобна для анализа плоских сеток в структуре КР. Для наглядности тетраэдр, образованный внутренними атомами ячейки, обозначен пунктиром.

Читайте также:
Как сделать таблички на стол для гостей

Рис.9. Модель кристаллической решетки алмазоподобного типа

Одна из граней куба совпадает с плоской сеткой ABCD, соответствующей плоскости (100); она изображена на рис.11.

Можно подсчитать, сколько атомов приходится на единицу поверхности такой сетки. Если сторона квадрата (постоянная решетки) равна а, то его площадь равна а 2 . Один атом, находящийся в середине квадрата, плоскостью принадлежит ему. Четыре атома, расположенные по вершинам квадрата, принадлежат ему частично.

Каждый из них входит также в состав трех квадратов, примыкающих к рассматриваемому в плоской сетке. Таким образом, на долю каждого из четырех смежных квадратов в плоскости (100) приходится четвертая часть атома, расположенного в общей вершине. Поскольку вершин четыре, то на площадь рассматриваемого квадрата приходится четыре четвертых атомов, расположенных на вершинах, т.е. всего один атом. С учетом атома, расположенного в центре квадрата, получаем два атома на рассматриваемой грани куба, и плотность плоской сетки, отвечающей грани (100), равна 2/а 2 .

Плоская сетка, соответствующая грани (110), на рис.10, совпадает с прямоугольником AFGD. Отдельно ячейка такой сетки изображена на рис.12. Площадь прямоугольника, соответствующего этой сетке, равна а 2 2. На эту площадь целиком приходится два атома, находящиеся внутри прямоугольника, четыре четверти атомов, лежащих на верхней и нижней сторонах прямоугольника. Таким образом, на площадь а 2 2 приходится всего 2+41/4+21/2=4 атома и плотность плоской сетки (110) равна 4/ а 2 2.

Плоская сетка (111) на рис.10 соответствует треугольнику EGD, который выделен на рис.13. Его площадь равна а 2 3/2. На эту площадь приходится всего два атома: три половинки атомов, находящихся на серединах сторон, и три шестых атомов, расположенных по вершинам. Плоскость (111) целиком покрыта этими треугольниками. Таким образом, на площадь a 2 3/2 приходится два атома: 31/2+31/6=2, следовательно, плотность плоской сетки (111) равна 2/( а 2 3/2) = 4/( а 2 3).

Если принять плотность плоской сетки (100) за единицу, рассмотренные плотности сеток (110), (111) и (100) будут сотноситься приблизительно следующим образом:

Это самые плотные сетки в кремнии, все остальные имеют меньшие плотности.

Но помимо плотности сеток необходимо учитывать их взаимное расположение и энергию связи между атомами. На рис.14 изображены расстояния между соседними взаимопараллельными плоскими сетками (111), (110), (100).

Читайте также:
Паве что такое в ювелирном изделии

Сетки ориентированы перпендикулярно относительно чертежа и их проекции показаны прямыми линиями. Из рисунка видно, что пространственное расположение сеток не одинаково. Сетки (110) и (100) расположены равномерно, но отличаются межплоскостными расстояниями. Так, для сеток (110) межплоскостные расстояния составляют а2/2, а для сеток (100) они равны а/4. Для сеток (111) картина сложнее.

Здесь наблюдается чередование больших и малых межплоскостных расстояний, т.е. сетки образуют тесно сближенные пары, причем расстояния между этими парами значительно больше, чем между сетками в паре. Расстояние между сближенными сетками в паре составляет а2/12, а расстояние между парами сеток равно а3/4, т.е. втрое больше. Две сближенные сетки тесно связаны между собой и так близки друг к другу, что практически их можно рассматривать как одну утолщенную плоскую сетку. Естественно, при этом плотность такой эквивалентной сетки удвоится и станет равной 8 а 2 3.

Соотношение плотностей сеток при этом изменится:

Если исходить не из плотностей сеток, а из числа наиболее интенсивных сил связи, приходящихся на плоскость сетки, то приведенное соотношение также имеет место. Таким образом, плоскость (111) в кристалле кремния следует считать «наиболее прочной».

Такой вывод хорошо согласуется с физическими данными.

Так, монокристалл кремния наиболее легко раскалывается по плоскостям, параллельным (111). Причину этого наглядно иллюстрирует рис.15, где показано расположение атомов в сетках (111) (сами сетки перпендикулярны плоскости чертежа и соответствуют прямым линиям). На рисунке видны сближенные пары сеток и чередующиеся большие и малые межплоскостные расстояния. Видно также, что для разделения далеко отстоящих друг от друга сеток достаточно разорвать одну валентную связь между атомами, в то время как внутри «толстой» сетки атомы объединены тремя валентными связями и разделить две близко расположенные сетки значительно труднее.

Также можно объяснить и неодинаковую твердость кристалла на различных гранях и по различным направлениям (применительно к алмазам, имеющим ту же структуру, что и кремний, преобладающая твердость на плоскости (111) была известна ювелирам уже давно).

Сильно отличаются скорости травления кремниевых структур в анизотропных травителях. Здесь также, поскольку плотность сетки плоскости (111) наибольшая, она упорнее всего поддается травлению и скорость травления в направлении нормальном к (111) минимальна.

Источник: studfile.net

Формула алмаза

Химическая формула алмаза

Молярная масса равна г/моль.

Физические свойства – это одно из самых твёрдых веществ с плотностью 3,47—3,55 г/см , обычно бесцветный, но может иметь различные цвета, прозрачный, хрупкий, блестящий.

Читайте также:
Сколько зарабатывают ювелиры

Плохо проводит электрический ток. Не плавится, сублимируется при , устойчив при нагревании в отсутствие кислорода.

Кристаллическая решетка алмаза гранецентрированная кубическая (а = 0,357 нм, z = 4). Атомы углерода в алмазе имеют -гибридизацию. Каждый атом С в структуре алмаза находится в центре тетраэдра, вершинами которого служат четыре соседних атома.

На рисунке ниже показана элементарная ячейка алмаза:

Химические свойства алмаза

  • Так как алмаз очень твёрдое вещество, то он является достаточно инертным, поэтому его основная реакция – это горение в кислороде при высокой температуре:

Получение алмаза

Алмаз является природным ископаемым, хотя его можно получить и искусственно. В промышленности алмазы получают из графита при высоких температуре и давлении.

Применение

Алмаз используется для создания ювелирных украшений, для изготовления ножей, свёрл, резцов, применяется как абразив, используется в микроэлектронике.

Примеры решения задач

Задание Рассчитайте константу равновесия превращения алмаза в графит при .
Решение Запишем уравнение реакции:

[ C_{(diamond)} rightleftharpoons C_{(graphite)} ]

Рассчитаем изменение энтальпии и энтропии реакции:

Delta H = Delta H (C_{graphite}) - Delta H (C_{diamond}) = 0 - 1,897 = -1,897

кДж/моль = Дж/моль

Delta S = Delta S (C_{graphite}) - Delta S (C_{diamond}) = 5,74 - 2,38 = 3,36

Дж/моль

Рассчитаем изменение энергии Гиббса реакции:

Delta G = Delta H - T cdot Delta S = -1897 - 298 cdot 3,36 = -2898,28

Дж/моль

Рассчитаем константу равновесия:

[ K = e^{-frac{Delta G}{R cdot T}} = e^{-frac{2898,28}{8,314 cdot 298}} = 3,221 ]

Задание Рассчитайте изменение теплоемкости при превращении алмаза в графит при .
Решение Запишем уравнение реакции:

[ C_{(diamond)} rightleftharpoons C_{(graphite)} ]

Рассчитаем изменение теплоемкости:

Delta C_p = C_p(C_{(graphite)}) - C_p(C_{(diamond)}) = 8,53 - 6,07 = 2,46

Дж/моль

Источник: ru.solverbook.com

Кристаллическая решетка и свойства алмаза

Алмаз — минерал, который является не чем иным, как модификацией углерода. Чистый алмаз имеет формулу, состоящую всего из одного элемента. Камень обладает уникальными свойствами в природе, поэтому кристаллическая решетка алмаза заинтересовала ученых, и структура вещества продолжает изучаться.

Идеальный алмаз можно представить как гигантскую молекулу углерода. Состав минерала ученые изучили только в конце XVIII века. С того момента начались попытки искусственного синтеза алмаза в лабораториях, но они были бессмысленными, поскольку отстроить кристаллическую решетку с нуля не получалось.

кристаллическая решетка алмаза

А еще техника не была на таком уровне, чтоб создать условия для образования алмаза. Только в пятидесятых годах ХХ века ученые смогли синтезировать алмаз самостоятельно. Этим занимались такие страны, как СССР, США и ЮАР.

Строение вещества

Вся загвоздка и сложность производства заключалась в уникальной структуре алмаза. Между атомами в химии может сформироваться четыре типа связи:

  • ковалентная;
  • ионная;
  • металлическая;
  • водородная.

Самая прочная из них — ковалентная связь. Она также имеет свои подвиды: сигма-связи и пи-связи. Второй подвид менее прочный. В алмазе есть несколько миллионов атомов углерода, которые соединены между собой с помощью ковалентных связей.

Читайте также:
Окаменевший скелет морских организмов это жемчуг

Пространственное расположение атомов и их соединения называются кристаллической решеткой. Именно ее строение и обусловливает такую характеристику, как твердость вещества. Элементарная ячейка структуры алмаза выглядит как куб. То есть алмаз кристаллизуется в кубической сингонии, если пользоваться научной терминологией.

На вершинах этого куба находится по атому углерода. По одному атому располагается в каждой грани, а еще четыре — внутри куба. Центральные атомы в гранях являются общими для двух ячеек, а те, что находятся в вершинах куба, — общие для восьми ячеек. Между собой атомы соединены ковалентными сигма-связями.

Такая структура и упаковка считается наиболее плотной. Каждый атом углерода располагается в центре тетраэдра и связан по всем сторонам. Поскольку валентность углерода равняется четырем, то все связи оказываются перекрытыми, и взаимодействие с веществом со стороны невозможно.

Расстояние между атомами одинаковое, свободных электронов нет, поэтому минерал является хорошим диэлектриком. Твердость алмаза достигается именно благодаря такому строению. Эти характеристики, в свою очередь, и стали причиной широкого использования камней. Они применяются не только в ювелирном деле, но и в качестве абразива, а также покрытия для инструментов.

Но не все в природе идеально. Даже в алмазах часто встречаются примеси. Такая структура позволяет минералу выглядеть абсолютно прозрачным, без включений. Но добываемые камни не всегда обладают ювелирными свойствами из-за большого количества дефектов и примесей.

Кристалл алмаза может содержать такие вещества:

  • алюминий;
  • кальций;
  • магний;
  • гранит.

Иногда в составе встречается вода, углекислота или другие газы. Примеси в кристалле располагаются неравномерно и несколько нарушают кристаллическую структуру. Если дефекты располагаются на периферии, что происходит чаще, тогда с ними можно бороться с помощью огранки.

Аллотропные модификации

Не только алмаз имеет подобный тип строения кристаллической решетки. Другие элементы из четвертой группы также имеют похожую структуру. Но все дело в атомной массе. Атомы углерода располагаются на близком расстоянии друг от друга, что делает связи прочнее. А вот с увеличением атомной массы элементы располагаются дальше и прочность соединений между ними падает.

А также у углерода есть в природе аллотропные модификации, куда, кроме алмаза, входят и другие вещества:

  • графит;
  • лонсдейлит;
  • сажа, уголь;
  • фуллерены;
  • углеродные нанотрубки.

Ученых интересовала возможность превращения графита в алмаз. Сделать это можно только под действиями очень высокого давления и температуры.

Все дело в том, что графит отличается по пространственному расположению атомов и связям между ними. Если у алмаза все связи ковалентные-сигма, то пространственные связи графита — пи-соединения. А также в решетке графита остается несколько свободных электронов у атомов, которые перемещаясь, создают эффект электропроводности. Такая форма решетки называется гексагональной. Поэтому графит по шкале твердости имеет показатель единицу.

Читайте также:
Как отличить сердолик от подделки

Лонсдейлиты еще не изучены окончательно, поскольку их добывают либо искусственно, либо из метеоритов, упавших на землю.

А вот фуллерены имеют кристаллическую решетку, напоминающую мяч, сложенный из восьмиугольников. По углам фигур расположены не атомы, а молекулы углерода. Эти вещества также продолжают исследовать.

Химический состав алмаза записывается формулой или элементом С.

Кроме показателя твердости — 10 из 10 по шкале Мооса — алмаз обладает такими характеристиками:

  • Плотность — 3,5 г/см3.
  • Камень довольно хрупкий. Несмотря на твердость, алмаз можно разрушить резким ударом.
  • Спайность. Плотность у вещества неравномерная. Камень раскалывается по параллельным граням кристалла. Спайность должна учитываться при огранке камня, поскольку расчет ювелира и последующий удар определяет плоскость скола и отсекает ненужные примеси.
  • Камень должен быть прозрачным. Тогда после огранки он будет играть на свету. Самые дорогие экземпляры называют алмазами чистой воды. Но все равно встречается до 5 % примесей в структуре, что искажает кристаллическую решетку, а иногда и портит вид камня.
  • Если воздействовать на камень рентгеновскими лучами, то прочность ковалентных связей нарушится. В результате решетка станет рыхлой и твердость вещества также снизится. Но после этой процедуры появится интересное свойство: камень будет излучать свет в синей и зеленой части спектра.

В природе добытый минерал имеет форму кристалла с разным количеством граней. Иногда добывают не полные камни, а только сколы от больших алмазов. Определить скол это или полноценный минерал можно, изучив строение кристаллической решётки. Грани минералов часто покрыты наростами и углублениями.

Цвет алмаза также отличается разнообразием. Встречаются желтые, красноватые или даже черные оттенки алмазов. Конечно, кристаллическая решетка у камней изменена. Но свойства от этого страдают не сильно. Такие минералы называют фантазийными.

Их окраска может быть неравномерной и зависеть от примесей в структуре.

Идеальное строение существует только у искусственных алмазов. Производство этих камней требует затравки в виде натурального кристалла, а также большого количества денежных вложений и аппаратуры. Но именно изучение кристаллической решетки и повлияло на развитие этой отрасли.

Источник: dedpodaril.com

Рейтинг
Загрузка ...