Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t°пл. и t°кип., потенциалами ионизации, плотностями и твердостью.
1. Очень реакционноспособны.
2. Обладают положительной валентностью +2.
3. Реагируют с водой при комнатной температуре (кроме Be) с выделением водорода.
4. Обладают большим сродством к кислороду (восстановители).
5. С водородом образуют солеобразные гидриды ЭH2.
6. Оксиды имеют общую формулу ЭО. Тенденция к образованию пероксидов выражена слабее, чем для щелочных металлов.
Нахождение в природе
Be
3BeO • Al2O3 • 6SiO2 – берилл
Mg
MgCO3 – магнезит
CaCO3 • MgCO3 – доломит
KCl • MgSO4 • 3H2O – каинит
KCl • MgCl2 • 6H2O – карналлит
Ca
CaCO3 – кальцит (известняк, мрамор и др.)
Ca3(PO4)2 – апатит, фосфорит
CaSO4 • 2H2O – гипс
CaSO4 – ангидрит
CaF2 – плавиковый шпат (флюорит)
Sr
SrSO4 – целестин
SrCO3 – стронцианит
Химия 9 класс (Урок№24 — Щелочноземельные металлы. Важнейшие соединения и их применение.)
Ba
BaSO4 – барит
BaCO3 – витерит
Бериллий получают восстановлением фторида:
BeF2 + Mg –t°® Be + MgF2
Барий получают восстановлением оксида:
3BaO + 2Al –t°® 3Ba + Al2O3
Остальные металлы получают электролизом расплавов хлоридов:
CaCl2 ® Ca + Cl2
катод: Ca2+ + 2e ® Ca0
анод: 2Cl- – 2e ® Cl02
Металлы главной подгруппы II группы — сильные восстановители; в соединениях проявляют только степень окисления +2. Активность металлов и их восстановительная способность увеличивается в ряду: ––Be–Mg–Ca–Sr–Ba®
1. Реакция с водой.
В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием гидроксидов, которые являтся сильными основаниями:
Mg + 2H2O –t°® Mg(OH)2 + H2
Ca + 2H2O ® Ca(OH)2 + H2
2. Реакция с кислородом.
Все металлы образуют оксиды RO, барий-пероксид – BaO2:
2Mg + O2 ® 2MgO
Ba + O2 ® BaO2
3. С другими неметаллами образуются бинарные соединения:
Be + Cl2 ® BeCl2(галогениды)
Ba + S ® BaS(сульфиды)
3Mg + N2 ® Mg3N2(нитриды)
Ca + H2 ® CaH2(гидриды)
Ca + 2C ® CaC2(карбиды)
3Ba + 2P ® Ba3P2(фосфиды)
Бериллий и магний сравнительно медленно реагируют с неметаллами.
4. Все металлы растворяются в кислотах:
Ca + 2HCl ® CaCl2 + H2
Mg + H2SO4(разб.) ® MgSO4 + H2
Бериллий также растворяется в водных растворах щелочей:
Be + 2NaOH + 2H2O ® Na2[Be(OH)4] + H2
5. Качественная реакция на катионы щелочноземельных металлов – окрашивание пламени в следующие цвета:
Ca2+ — темно-оранжевый
Sr2+- темно-красный
Ba2+ — светло-зеленый
Катион Ba2+ обычно открывают обменной реакцией с серной кислотой или ее солями:
Сульфат бария – белый осадок, нерастворимый в минеральных кислотах.
Оксиды щелочноземельных металлов
Щелочноземельные металлы — Все свойства!
1) Окисление металлов (кроме Ba, который образует пероксид)
2) Термическое разложение нитратов или карбонатов
CaCO3 –t°® CaO + CO2
2Mg(NO3)2 –t°® 2MgO + 4NO2 + O2
Типичные основные оксиды. Реагируют с водой (кроме BeO), кислотными оксидами и кислотами
MgO + H2O ® Mg(OH)2
3CaO + P2O5 ® Ca3(PO4)2
BeO + 2HNO3 ® Be(NO3)2 + H2O
BeO — амфотерный оксид, растворяется в щелочах:
BeO + 2NaOH + H2O ® Na2[Be(OH)4]
Гидроксиды щелочноземельных металлов R(OH)2
Гидроксиды R(OH)2 — белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов (растворимость гидроксидов уменьшается с уменьшением порядкового номера; Be(OH)2 – нерастворим в воде, растворяется в щелочах). Основность R(OH)2 увеличивается с увеличением атомного номера:
Be(OH)2 – амфотерный гидроксид
Mg(OH)2 – слабое основание
остальные гидроксиды — сильные основания (щелочи).
Ca(OH)2 + SO2 ® CaSO3 + H2O
Ba(OH)2 + CO2 ® BaCO3¯ + H2O
Mg(OH)2 + 2CH3COOH ® (CH3COO)2Mg + 2H2O
Ba(OH)2 + 2HNO3 ® Ba(NO3)2 + 2H2O
Ba(OH)2 + K2SO4 ® BaSO4¯+ 2KOH
4) Реакция гидроксида бериллия со щелочами:
Be(OH)2 + 2NaOH ® Na2[Be(OH)4]
Природная вода, содержащая ионы Ca2+ и Mg2+, называется жесткой. Жесткая вода при кипячении образует накипь, в ней не развариваются пищевые продукты; моющие средства не дают пены.
Карбонатная (временная) жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния, некарбонатная (постоянная) жесткость – хлоридов и сульфатов.
Общая жесткость воды рассматривается как сумма карбонатной и некарбонатной.
Удаление жесткости воды осуществляется путем осаждения из раствора ионов Ca2+ и Mg2+:
Сa(HCO3)2 –t°® CaCO3¯ + CO2 + H2O
Mg(HCO3)2 –t°® MgCO3¯ + CO2 + H2O
2) добавлением известкового молока:
Ca(HCO3)2 + Ca(OH)2 ® 2CaCO3¯ + 2H2O
3) добавлением соды:
Ca(HCO3)2 + Na2CO3 ® CaCO3¯+ 2NaHCO3
CaSO4 + Na2CO3 ® CaCO3¯ + Na2SO4
MgCl2 + Na2CO3 ® MgCO3¯ + 2NaCl
4) пропусканием через ионнообменную смолу
а) катионный обмен:
2RH + Ca2+ ® R2Ca + 2H+
б) анионный обмен:
2ROH + SO42- ® R2SO4 + 2OH-
(где R — сложный органический радикал)
Для удаления временной жесткости используют все четыре способа, а для
постоянной — только два последних.
Источник: www.examen.ru
ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ
Щёлочноземельные металлы — химические элементы подгруппы кальция IIA периодической системы Д. И. Менделеева. К щелочноземельным металлам относятся кальций (см.), стронций (см.), барий (см.), радий (см.) и близкие по ряду свойств бериллий (см.) и магний (см.).
Кальций наряду с кислородом, углеродом, водородом, азотом и фосфором составляет основную массу живого вещества, обладает высокой биологической активностью, является основным структурным компонентом костей скелета (см. Кость) и зубов (см.
Зубы) человека и животных, а также важным компонентом свертывающей системы крови (см.); в питании человека кальций является незаменимым элементом. Один из наиболее важных биоэлементов — магний— служит активатором многих ферментативных процессов, необходим для нормального функционирования нервной и мышечной ткани. К микроэлементам (см.) относятся остальные щелочноземельные металлы (кроме бериллия и радия). Содержание некоторых щелочноземельных металлов, особенно кальция и магния, в крови, моче и других средах организма является информативным диагностическим тестом при многих заболеваниях. Соединения некоторых щелочноземельных металлов используются в медицине в качестве лекарственных средств.
Элементы IIА подгруппы периодической системы химических элементов (см.) получили свое название от слова «земли», которым алхимики называли окислы щелочноземельных металлов и которые придавали воде щелочную реакцию (см. Щелочи).
Щелочноземельные металлы обладают близкими физическими и химическими свойствами (особенно кальций, стронций и барий), в соединениях проявляют валентность + 2. Химическая активность щелочноземельных металлов возрастает в ряду от кальция к радию. В обычных условиях они реагируют с кислородом (бериллий — при нагревании до 800° и выше), водой, фтором и другими галогенами (см.). С водородом щелочноземельные металлы вступают в реакцию при повышенных температурах, растворяются в разбавленных минеральных кислотах и жидком аммиаке. Соединения бериллия и бария (исключение — сульфат бария) сильно ядовиты.
По способности образовывать комплексные соединения (см.) щелочноземельные металлы занимают промежуточное положение между щелочными металлами (см.) и переходными металлами. Ионы щелочноземельны металлов образуют с комплекс ионами (см.) достаточно устойчивые комплексы, имеющие большое практическое значение. Они используются и для количественного определения щелочноземельных металлов. Комплексонаты кальция (тетацин кальций и др.) применяют для выведения из организма свинца, марганца и других металлов. Ионы щелочноземельных металлов, присутствующие в крови и клеточных жидкостях, по большей части находятся в виде комплексных соединений с белками (см.).
Библиогр.: Коттон Ф. А. и Уилкинсон Дж. Основы неорганической химии, пер. с англ., М., 1979; Hекрасов Б. В. Основы общей химии, т. 2, М., 1969; Хьюз М. Неорганическая химия биологических процессов, пер. с англ., М., 1983.
Источник: xn--90aw5c.xn--c1avg
Щёлочноземельные металлы
Щёлочноземельные металлы — химические элементы: кальций Ca, стронций Sr, барий Ba, радий Ra (иногда к щёлочноземельным металлам ошибочно относят также бериллий Be и магний Mg). Названы так потому, что их оксиды — «земли» (по терминологии алхимиков) — сообщают воде щёлочную реакцию. Соли щёлочноземельных металлов, кроме радия, широко распространены в природе в виде минералов.
— кальций Ca
— стронций Sr
— барий Ba
— радий Ra
Иногда к щёлочноземельным металлам ошибочно относят также бериллий Be и магний Mg.
Периодическая система химических элементов Менделеева
Классификация хим. элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона/
IA | IIA | IIIB | IVB | VB | VIB | VIIB | —- | VIIIB | —- | IB | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | |
Период | ||||||||||||||||||
1 | 1 H Водород |
2 He Гелий |
||||||||||||||||
2 | 3 Li Литий |
4 Be Бериллий |
5 B Бор |
6 C Углерод |
7 N Азот |
8 O Кислород |
9 F Фтор |
10 Ne Неон |
||||||||||
3 | 11 Na Натрий |
12 Mg Магний |
13 Al Алюминий |
14 Si Кремний |
15 P Фосфор |
16 S Сера |
17 Cl Хлор |
18 Ar Аргон |
||||||||||
4 | 19 K Калий |
20 Ca Кальций |
21 Sc Скандий |
22 Ti Титан |
23 V Ванадий |
24 Cr Хром |
25 Mn Марганец |
26 Fe Железо |
27 Co Кобальт |
28 Ni Никель |
29 Cu Медь |
30 Zn Цинк |
31 Ga Галлий |
32 Ge Германий |
33 As Мышьяк |
34 Se Селен |
35 Br Бром |
36 Kr Криптон |
5 | 37 Rb Рубидий |
38 Sr Стронций |
39 Y Иттрий |
40 Zr Цирконий |
41 Nb Ниобий |
42 Mo Молибден |
(43) Tc Технеций |
44 Ru Рутений |
45 Rh Родий |
46 Pd Палладий |
47 Ag Серебро |
48 Cd Кадмий |
49 In Индий |
50 Sn Олово |
51 Sb Сурьма |
52 Te Теллур |
53 I Иод |
54 Xe Ксенон |
6 | 55 Cs Цезий |
56 Ba Барий |
* | 72 Hf Гафний |
73 Ta Тантал |
74 W Вольфрам |
75 Re Рений |
76 Os Осмий |
77 Ir Иридий |
78 Pt Платина |
79 Au Золото |
80 Hg Ртуть |
81 Tl Таллий |
82 Pb Свинец |
83 Bi Висмут |
(84) Po Полоний |
(85) At Астат |
86 Rn Радон |
7 | 87 Fr Франций |
88 Ra Радий |
** | (104) Rf Резерфордий |
(105) Db Дубний |
(106) Sg Сиборгий |
(107) Bh Борий |
(108) Hs Хассий |
(109) Mt Мейтнерий |
(110) Ds Дармштадтий |
(111) Rg Рентгений |
(112) Cp Коперниций |
(113) Uut Унунтрий |
(114) Uuq Унунквадий |
(115) Uup Унунпентий |
(116) Uuh Унунгексий |
(117) Uus Унунсептий |
(118) Uuo Унуноктий |
8 | (119) Uue Унуненний |
(120) Ubn Унбинилий |
||||||||||||||||
Лантаноиды * | 57 La Лантан |
58 Ce Церий |
59 Pr Празеодим |
60 Nd Неодим |
(61) Pm Прометий |
62 Sm Самарий |
63 Eu Европий |
64 Gd Гадолиний |
65 Tb Тербий |
66 Dy Диспрозий |
67 Ho Гольмй |
68 Er Эрбий |
69 Tm Тулий |
70 Yb Иттербий |
71 Lu Лютеций |
|||
Актиноиды ** | 89 Ac Актиний |
90 Th Торий |
91 Pa Протактиний |
92 U Уран |
(93) Np Нептуний |
(94) Pu Плутоний |
(95) Am Америций |
(96) Cm Кюрий |
(97) Bk Берклий |
(98) Cf Калифорний |
(99) Es Эйнштейний |
(100) Fm Фермий |
(101) Md Менделевий |
(102) No Нобелей |
(103) Lr Лоуренсий |
Щелочные металлы | Щёлочноземельные металлы | Лантаноиды | Актиноиды | Переходные металлы |
Лёгкие металлы | Полуметаллы | Неметаллы | Галогены | Инертные газы |
198095, г.Санкт-Петербург, ул.Швецова, д.23, лит.Б, пом.7-Н, схема проезда
Источник: himsnab-spb.ru