Какие металлы окисляются на воздухе

Это обуславливает все важнейшие физические свойства металлов: металлический блеск, электро- и теплопроводность, пластичность (способность изменять форму под внешним воздействием) и некоторые другие, характерные для этого класса простых веществ.

Металлы I группы главной подгруппы называют щелочными металлами.

Металлы II группы: кальций, стронций, барий – щелочноземельными.

Химические свойства металлов

В химических реакциях металлы проявляют только восстановительные свойства, т.е. их атомы отдают электроны, образуя в результате положительные ионы.

1. Взаимодействуют с неметаллами:

а) кислородом (с образованием оксидов)

Щелочные и щелочноземельные металлы окисляются легко при обычных условиях, поэтому их хранят под слоем вазелинового масла или керосина.

Что Будет, Если СПЛАВИТЬ ВСЕ МЕТАЛЛЫ Вместе?

2Ca + O2 = 2CaO

Обратите внимание: при взаимодействии натрия – образуется пероксид, калия — надпероксид

2Na + O2 = Na2O2, К + О 2 = КО 2

а оксиды получают прокаливанием пероксида с соответствующими металлом:

Железо, цинк, медь и другие менее активные металлы медленно окисляются на воздухе и активно при нагревании.

3Fe + 2O2 = Fe3O4 (смесь двух оксидов: FeO и Fe2O3)

2Zn + O2 = 2ZnO

2Cu + O2 = 2CuO

Золото и платиновые металлы не окисляются кислородом воздуха ни при каких условиях.

б) водородом (с образованием гидридов)

2Na + H2 = 2NaH

в) хлором (с образованием хлоридов)

2K + Cl2 = 2KCl

Mg + Cl2 = MgCl2

2Al + 3Cl2 =2AlCl3

Обратите внимание: при взаимодействии железа образуется хлорид железа (III):

2Fe + 3Cl2 = 2FeCl3

г) серой (с образованием сульфидов)

2Na + S = Na2S

Hg + S = HgS

2Al + 3S = Al2S3

Обратите внимание: при взаимодействии железа образуется сульфид железа (II):

Fe + S = FeS

д) азотом (с образованием нитридов)

2Al + N2 = 2AlN

2. Взаимодействуют со сложными веществами:

Необходимо помнить, что по восстановительной способности металлы расположены в ряд, который называют электрохимическим рядом напряжений или активности металлов (вытеснительный ряд Бекетова Н.Н.):

Li, K, Ba, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Co, Ni, Sn, Pb, (H2), Cu, Hg, Ag, Au, Pt

а) водой

Металлы, расположенные в ряду до магния, при обычных условиях вытесняют водород из воды, образуя растворимые основания – щелочи.

2Na + 2H2O = 2NaOH + H2↑

Магний взаимодействует с водой при кипячении.

Алюминий при удалении оксидной пленки бурно реагирует с водой.

Остальные металлы, стоящие в ряду до водорода, при определенных условиях тоже могут вступать в реакцию с водой с выделением водорода и образованием оксидов.

Коррозия металла. Химия – Просто

б) растворами кислот

(Кроме концентрированной серной кислоты и азотной кислоты любой концентрации. См. раздел «Окислительно-восстановительные реакции».)

Обратите внимание: не используют для проведения реакций нерастворимую кремниевую кислоту

Металлы, стоящие в ряду до магния и активно реагирующие с водой, не используют для проведения таких реакций.

Металлы, стоящие в ряду от магния до водорода, вытесняют водород из кислот.

Mg + 2HCl = MgCl2 + H2↑

Обратите внимание: образуются соли двухвалентного железа.

Образование нерастворимой соли препятствует протеканию реакции. Например, свинец практически не реагирует с раствором серной кислоты из-за образования на поверхности нерастворимого сульфата свинца.

Читайте также:
Gc часы что за бренд

Металлы, стоящие в ряду после водорода, НЕ вытесняют водород.

в) растворами солей

Металлы, стоящие в ряду до магния и активно реагирующие с водой, не используют для проведения таких реакций.

Для остальных металлов выполняется правило:

Каждый металл вытесняет из растворов солей другие металлы, расположенные в ряду правее него, и сам может быть вытеснен металлами, расположенными левее него.

Cu + HgCl2 = Hg + CuCl2

Fe + CuSO4 = FeSO4 + Cu

Как и в случае с растворами кислот, образование нерастворимой соли препятствует протеканию реакции.

г) растворами щелочей

Взаимодействуют металлы, гидроксиды которых амфотерны.

2Al + 2KOH + 6H2O = 2K[Al(OH) 4] + 3H2↑

д) с органическими веществами

Щелочные металлы со спиртами и фенолом.

Металлы участвуют в реакциях с галогеналканами, которые используют для получения низших циклоалканов и для синтезов, в ходе которых происходит усложнение углеродного скелета молекулы (реакция А.Вюрца):

2CH2Cl + 2Na = C2H6(этан) + 2NaCl

Неметаллы

В простых веществах атомы неметаллов связаны ковалентной неполярной связью. При этом образуются одинарные (в молекулах H2, F2, Cl2, Br2, I2), двойные (в молекулах О2), тройные (в молекулах N2) ковалентные связи.

Строение простых веществ – неметаллов:

1. молекулярное

При обычных условиях большинство таких веществ представляют собой газы (Н2, N2, O2, O3, F2, Cl2) или твердые вещества (I2, P4, S8) и лишь единственный бром (Br2) является жидкостью. Все эти вещества молекулярного строения, поэтому летучи. В твердом состоянии они легкоплавки из-за слабого межмолекулярного взаимодействия, удерживающего их молекулы в кристалле, и способны к возгонке.

2. атомное

Эти вещества образованы кристаллами, в узлах которых находятся атомы: (Bn, Сn, Sin, Ge n , Sen, Ten). Из-за большой прочности ковалентных связей они, как правило, имеют высокую твердость, и любые изменения, связанные с разрушением ковалентной связи в их кристаллах (плавление, испарение), совершаются с большой затратой энергии. Многие такие вещества имеют высокие температуры плавления и кипения, а летучесть их весьма мала.

Многие элементы – неметаллы образуют несколько простых веществ – аллотропных модификаций. Аллотропия может быть связана с разным составом молекул: кислород О2 и озон О3 и с разным строением кристаллов: аллотропными модификациями углерода являются графит, алмаз, карбин, фуллерен. Элементы – неметаллы, имеющие аллотропные модификации: углерод, кремний, фосфор, мышьяк, кислород, сера, селен, теллур.

Химические свойства неметаллов

У атомов неметаллов преобладают окислительные свойства, то есть способность присоединять электроны. Эту способность характеризует значение электроотрицательности. В ряду неметаллов

At, B, Te, H, As, I, Si, P, Se, C, S, Br, Cl, N, O, F

электроотрицательность возрастает и усиливаются окислительные свойства.

Отсюда следует, что для простых веществ – неметаллов будут характерны как окислительные, так и восстановительные свойства, за исключением фтора – самого сильного окислителя.

1. Окислительные свойства

а) в реакциях с металлами (металлы всегда восстановители)

2Na + S = Na2S (сульфид натрия)

3Mg + N2 = Mg3N2 (нитрид магния)

б) в реакциях с неметаллами, расположенными левее данного, то есть с меньшим значением электроотрицательности. Например, при взаимодействии фосфора и серы окислителем будет сера, так как фосфор имеет меньшее значение электроотрицательности:

Читайте также:
Ювелирные изделия это недвижимость

2P + 5S = P2S5 (сульфид фосфора V)

Большинство неметаллов будут окислителями в реакциях с водородом:

в) в реакциях с некоторыми сложными веществами

Окислитель – кислород, реакции горения

Окислитель – хлор

2KI + Cl2 = 2KCl + I2

2. Восстановительные свойства

а) в реакциях с фтором

б) в реакциях с кислородом (кроме фтора)

в) в реакциях со сложными веществами – окислителями

H2 + CuO = Cu + H2O

Cl2 + H2O = HCl + HClO

3Cl2 + 6KOH = 5KCl + KClO3 + 3H2O

Источник: school4eg.jimdofree.com

Почему железо ржавеет, а другие металлы нет?

Все объясняется просто. Железо — металл, который очень легко окисляется (ржавеет) на воздухе при попадании на него влаги (воды). Причем эта влага не обязательно должны быть пролита на металл. Это может быть влага, содержащаяся в воздухе, если ее количество в нем значительное. Окисляется железо легко, так как для этого химического процесса не нужна высокая температура.

А вот по времени процесс довольно длительный. Химическая формула окисла (ржавчины) следующая и не такая простая и в ней несколько компонентов: Fe2O3·nH2O (гидратированный оксид железа), FeO(OH) и Fe(OH)3 (метагидроксиды железа). Вообще, ржавчина — понятие частное. Ржавчина — продукт коррозии именно железа. А коррозия — общий процесс окисления любых металлов.

Так как причиной ржавления железа и его сплавов (сталь, чугун) являются влага и кислород, то защитить его от коррозии можно с помощью какого-либо покрытия (краска, лак или покрытие другим металлом).

И, кстати, коррозия металла — это процесс свойственный не только железу. Практически все металлы подвержены коррозии и неправильно говорить, что «ржавеет» только железо. Просто у других металлов окислы называются не ржавчиной, а патиной (медь, свиней, олово, бронза и т.д.), у алюминия поверхностный окисел — корундом. Не подвергаются коррозии только некоторые металлы — золото, платина, серебро и еще некоторые.

А вот картинка, которая описывает понятие коррозии в общем:

Источник: www.bolshoyvopros.ru

11.4.1. Отношение металлов к окислителям — простым веществам

Металлы чаще всего реагируют со следующими окислителями — простыми веществами: кислородом, галогенами, серой, азотом, водородом.

ОТНОШЕНИЕ МЕТАЛЛОВ К КИСЛОРОДУ

Большинство металлов окисляется кислородом воздуха, но при различных условиях:

По отношению к кислороду все металлы принято подразделять на 4 группы:

Металлы, активно окисляющиеся кислородом воздуха при обычных условиях. К ним относят: элементы IА, IIА (кроме Be, Mg), IIIБ (кроме Sc) групп. При взаимодействии указанных металлов с кислородом могут образовываться различные продукты:

Металлы, окисляющиеся только с поверхности (с образованием плотной оксидной пленки, предохраняющей металл от дальнейшего окисления). К этой группе металлов относят Be, Mg, Sc, Al, Zn, Cr, Pb. Например, при окислении алюминия:

образуется оксидная пленка толщиной менее 30 нм, которая защищает металл от дальнейшего окисления.

Металлы, не окисляющиеся при обычных условиях кислородом воздуха (Co, Ni, Cu, Te, Re, Bi и др.) окисляются при нагревании. Поверхностный слой (преимущественно оксидного характера) при этом металл не защищает,

Читайте также:
Что такое ангидрид в химии

2Cu + O2 2CuO

Металлы, для которых устойчивы высшие степени окисления, в частности, элементы VIБ-группы, окисляются с образованием высших оксидов

2W + 3O2 2WO3

Металлы не окисляющиеся кислородом в отсутствие других реагентов: Au, Ag, Pd, Ir, Pt. Для оксидов этих металлов величина fG(298 K) > 0, следовательно, образующиеся оксиды этих металлов должны распадаться в момент образования:

В некоторых случаях металлы, не взаимодействующие с кислородом, окисляются им в присутствии других соединений. Например, молекулы аммиака, способствующие комплексообразованию, облегчают процесс окисления меди кислородом:

Медные изделия на воздухе покрываются зеленоватым налетом — патиной, состоящей преимущественно из основного карбоната меди:

Серебряные предметы на воздухе темнеют из-за образования на поверхности металла сульфида серебра:

Медь, серебро и золото растворяются в цианидах (в присутствии кислорода):

Аллотропная модификация кислорода — озон (O3) также является достаточно сильным окислителем, взаимодействующим даже с малоактивными металлами:

ОТНОШЕНИЕ МЕТАЛЛОВ К ГАЛОГЕНАМ

Практически все металлы при нагревании окисляются галогенами (F2, Cl2, Br2, I2) с образованием соответствующих галидов (при обычных условиях с галогенами взаимодействуют только элементы IА-группы):

2Na + Cl2 = 2NaCl — хлорид натрия

Большинство металлов взаимодействуют с галогенами при нагревании:

Mg + F2 MgF2 — фторид магния

ОТНОШЕНИЕ МЕТАЛЛОВ К СЕРЕ

Ртуть с серой взаимодействует при стандартных условиях:

Все остальные металлы (за исключением Au, Pt, Pd) взаимодействуют с серой при нагревании:

Zn + S ZnS — сульфид цинка

ОТНОШЕНИЕ МЕТАЛЛОВ К АЗОТУ

При обычных условиях с азотом взаимодействует только литий:

6Li + N2 = 2Li3N — нитрид лития

Na, K, Rb, Cs — взаимодействуют с азотом в электрическом разряде. Al, Mn, Mg, а также элементы IIIБ, IVБ, VБ, VIБ — групп взаимодействуют с азотом при нагревании, например:

Не взаимодействуют с азотом элементы IБ, IIБ, VIIIБ — групп, а также — Sn, Pb, Bi, Tc, Re.

ОТНОШЕНИЕ МЕТАЛЛОВ К ВОДОРОДУ

При нагревании с водородом взаимодействуют металлы IА и IIА — групп:

— гидрид натрия

Окислителем в данной реакции является водород:

С остальными металлами водород непосредственно не реагирует, но образует со многими из них твердые растворы. Это приводит к повышению хрупкости и снижению пластичности металла.

Способность некоторых металлов (Al, элементы VБ, VIБ, VIIIБ — групп) поглощать (адсорбировать) своей поверхностью значительные объемы водорода широко используют в катализе. Так, один объем Pd при 80 С может поглотить до 900 объемов водорода, что позволяет использовать его (как и некоторые другие металлы, например, Ni) в качестве катализатора в реакциях гидрирования (восстановления водородом).

ОТНОШЕНИЕ МЕТАЛЛОВ К ОКИСЛИТЕЛЯМ — СЛОЖНЫМ ВЕЩЕСТВАМ

В качестве окислителей сложного состава, с которыми чаще всего контактируют металлы, обычно рассматривают воду, водные растворы щелочей и кислот.

Следует отметить, что восстановительная активность металлов может существенно изменяться в зависимости от условий протекания реакции. В частности, при комплексообразовании величина электродного потенциала металла значительно уменьшается:

Аналогичный характер изменения величины Me n+ /Me наблюдают, если в процессе реакции образуются малорастворимые соединения:

Читайте также:
3 д моделирование ювелирных изделий что это

Учитывая, (см. гл. 4 и 8), что

где  =  окислителя —  восстановителя, получаем, что для самопроизвольного протекания окислительно-восстановительного процесса необходимо, чтобы  > 0, т.е.

ОТНОШЕНИЕ МЕТАЛЛОВ К ВОДЕ

В реакциях данного типа роль окислителя играют ионы водорода, образующиеся при диссоциации молекул воды. При рН = 7 2H + /H2 = -0,41 В, следовательно, с водой теоретически могут реагировать все металлы, имеющие величину  меньше -0,41 В. Реально же наблюдается следующее:

а) активные металлы интенсивно взаимодействуют с водой, вытесняя при этом водород:

Аналогичная реакция с Mg протекает при нагревании:

Mg + 2H2O Mg(OH)2 + H2 ,

исключения составляют: — Be, Al и Sc, поверхность которых покрыта прочными оксидными пленками, нерастворимыми в воде; Mg, образующийся гидроксид которого — Mg(OH)2, малорастворим;

б) металлы средней активности при стандартных условиях с водой практически не реагируют, т.к. они или покрыты оксидными пленками, или образуют труднорастворимые гидроксиды (Cr, Ni, Zn) на поверхности металлов. Данные металлы могут разлагать воду при достаточно высоких температурах (до 1000 °С):

При сильном нагревании Ti, Zr, Hf взаимодействуют с водой следующим образом:

3Zr + 2H2O ZrO2 + 2ZrH2 ;

в) малоактивные металлы с водой при обычных условиях не взаимодействуют, поскольку величина их стандартного электродного потенциала значительно больше потенциала окислителя (-0,41 В) и термодинамически данная реакция невозможна.

ОТНОШЕНИЕ МЕТАЛЛОВ К ВОДНЫМ РАСТВОРАМ ЩЕЛОЧЕЙ

С водными растворами щелочей взаимодействуют металлы, расположенные в ряду напряжений до водорода и образующие амфотерные гидроксиды: Be, Al, Zn, Cr, Sn, Pb. Взаимодействие часто обусловлено сдвигом величины электродного потенциала металла в сторону отрицательных значений за счет процесса образования гидроксокомплексов. В качестве примера рассмотрим реакцию:

где  ок.(иона H + ) = -0,828 В (pH = 14) меньше, чем  восст.(Zn) = -0,763 В. Тем не менее, данный процесс возможен. Его можно представить в виде двух более простых:

1) взаимодействие металла с водой:

2) растворение образующегося амфотерного гидроксида в избытке щелочи с образованием гидроксокомплекса:

При этом для суммарного процесса величина стандартного электродного потенциала восстановителя равна:

т.е. окислителя > восстановителя, следовательно, данная реакция возможна.

ОТНОШЕНИЕ МЕТАЛЛОВ К КИСЛОТАМ

По окислительной активности кислоты условно делят на 2 группы:

1) кислоты — слабые окислители (HF, HCl, HBr, HI, H2S, H2CO3, H3PO4, H2SO3, CH3COOH и др.). В растворах этих кислот окислителем является ион водорода (H + ).

2) кислоты — сильные окислители (HNO3, H2SO4, H2SeO4, HClO4, HMnO4 и др. Окислителями в растворах этих кислот являются кислородсодержащие анионы HSO4 — , SO4 2- , NO3 — , ClO4 — и т.д.

ОТНОШЕНИЕ МЕТАЛЛОВ К КИСЛОТАМ — СЛАБЫМ ОКИСЛИТЕЛЯМ

Величина стандартного электродного потенциала окислителя (H + ) при рН = 0 равна 2H + /H2 = 0 В. Следовательно, металлы, стоящие в ряду напряжений до водорода (Me n+ /Me < 0), должны вытеснять его из растворов этих кислот:

Zn + 2HCl = ZnCl + H2

Исключение составляют металлы, которые при взаимодействии с данными кислотами образуют труднорастворимые соединения (реакции протекают в первый момент):

Некоторые малоактивные металлы, не взаимодействующие с разбавленными растворами кислот — слабых окислителей, взаимодействуют с концентрированными растворами этих же кислот. В частности, медь не взаимодействует с разбавленными растворами соляной кислоты, но растворяется в ее концентрированных растворах за счет процесса комплексообразования:

Читайте также:
Как сплести кубик из бисера

Ряд металлов, для которых характерны устойчивые соединения в высшей степени окисления образуют анионные комплексы, например:

ОТНОШЕНИЕ МЕТАЛЛОВ К КИСЛОТАМ — СИЛЬНЫМ ОКИСЛИТЕЛЯМ

а). Отношение металлов к концентрированной H2SO4 .

Окислителем в концентрированных растворах H2SO4 является S в ионах HSO4 — , SO4 2- . В зависимости от активности металла он может восстанавливаться до H2S (), S или до SO2 (см. схему).

Кроме этих соединений, во всех трех случаях основными продуктами реакции также являются соответствующая соль (сульфат или гидросульфат) и вода:

Некоторые металлы взаимодействуют с концентрированными и разбавленными растворами H2SO4 неодинаково. Так, олово с разбавленной H2SO4 образует соль катионного типа, повышая свою степень окисления до (+2):

а с концентрированной H2SO4 образует соль, в которой олово находится в высшей степени окисления (+4):

В концентрированных растворах H2SO4 пассивируются на холоду Al, Cr, Fe, Co, Ni, Ti, Zr, Hf, Mo, W и др.

Не взаимодействуют с H2SO4: Pt, Au, Ru, Rh, Ir, и др.

б). Отношение металлов к разбавленной HNO3.

Окислителем в растворах HNO3 является нитрат-ион: NO3 — . Как и в предыдущем случае, состав основных продуктов реакции определяется активностью металла (см. схему), участвующего во взаимодействии:

Пассивация — торможение (или полное прекращение) химического процесса за счет продуктов взаимодействия (образование труднорастворимых оксидных, гидроксидных, солевых и иных пленок на поверхности металла).

Пассивируются в разбавленных растворах HNO3 (на холоду) Al, Mo, W и др. Не взаимодействуют: Pt, Au, Ru, Rh, Ir.

в). Отношение металлов к концентрированной HNO3.

В отличие от взаимодействия металлов с разбавленной HNO3 в данном случае состав продуктов реакции менее разнообразен. В большинстве случаев нитрат-ион восстанавливается до NO2. Часто процесс протекает при нагревании:

Ряд элементов, имеющих высокие (+4 и более) степени окисления при взаимодействии с концентрированной HNO3 образует гидроксиды (оксиды) в данной степени окисления:

Пассивируются в концентрированных растворах HNO3 (на холоду) Be, Al, Cr, Fe, Co, Ni, Ti, Zr, Hf, Pb, Bi но при нагревании ряд металлов начинает активно взаимодействовать с HNO3. Не взаимодействуют: Pt, Au, Ir, Ru, Rh, Nb, Ta.

г) Отношение металлов к смесям кислот.

Ряд малоактивных металлов (Au, Ru, Os) не растворяется (или очень плохо) в перечисленных выше кислотах — сильных окислителях. Однако, в смесях кислот, в частности, HNO3 + 3HCl (“царская водка”) эти металлы растворяются:

Вместо HCl при растворении ряда металлов (Ti, Zr, Nb, Pt и др.) предпочтительнее использовать HF (плавиковая кислота):

ОТНОШЕНИЕ МЕТАЛЛОВ К СМЕСЯМ ОКИСЛИТЕЛЕЙ

Для решения ряда технологических вопросов, связанных с получением или обработкой некоторых металлов, иногда приходится использовать в качестве окислителей различные смеси сложных веществ. В качестве примеров можно привести процессы окисления ряда металлов в щелочной среде:

Возможно использование и других окислительных смесей.

Источник: studfile.net

Рейтинг
Загрузка ...