Какие свойства щелочных металлов

Строение и свойства атомов. Щелочные металлы — это элементы главной подгруппы I группы (IA группы) Периодической системы Д. И. Менделеева: литий Li, натрий Na, калий К, рубидий Rb, цезий Cs и франций Fr. Франций — редкий радиоактивный элемент.

На внешнем энергетическом уровне атомы этих элементов содержат по одному электрону, находящемуся на сравнительно большом удалении от ядра. Они легко отдают этот электрон, поэтому являются очень сильными восстановителями. Во всех своих соединениях щелочные металлы проявляют степень окисления + 1. Восстановительные свойства их усиливаются при переходе от Li к Cs, что связано с увеличением радиусов их атомов. Это наиболее типичные представители металлов: металлические свойства выражены у них особенно ярко.

Щелочные металлы — простые вещества. Серебристо-белые мягкие вещества (режутся ножом), с характерным блеском на свежесрезанной поверхности (рис. 48).

Щелочные металлы. Физические и химические свойства. Оксиды и гидроксиды щелочных металлов.

Рис. 48.
Хранение щелочных металлов и их физические свойства

Все они лёгкие и легкоплавкие, причём, как правило, плотность их возрастает от лития к цезию, а температура плавления, наоборот, уменьшается (рис. 49).

Рис. 49.
Плотности и температуры плавления щелочных металлов

Щелочные металлы активно взаимодействуют почти со всеми неметаллами. Используя общее обозначение для металлов М, запишем в общем виде уравнения реакций щелочных металлов с неметаллами — водородом, хлором и серой:

При взаимодействии с кислородом натрий образует не оксид, а пероксид:

И только литий образует оксид при взаимодействии с кислородом:

Рис. 50.
Взаимодействие натрия с водой и собирание водорода методом вытеснения воздуха

Как вы уже знаете, все щелочные металлы активно взаимодействуют с водой, образуя щёлочи и восстанавливая воду до водорода (рис. 50 и 51):

Рис. 51.
Взаимодействие калия с водой

Скорость взаимодействия щелочного металла с водой будет увеличиваться от лития к цезию (почему?).

Соединения щелочных металлов. В свободном виде в природе щелочные металлы не встречаются из-за своей исключительно высокой химической активности. Некоторые их природные соединения, в частности соли натрия и калия, довольно широко распространены, они содержатся во многих минералах, растениях, природных водах.

Рассмотрим основные соединения щелочных металлов на примере соединений натрия и калия — наиболее важных представителей этой группы элементов.

Оксиды М2O — твёрдые вещества. Имеют ярко выраженные основные свойства: взаимодействуют с водой, кислотами и кислотными оксидами (запишите уравнения соответствующих реакций).

Щелочные металлы

Оксиды натрия Na2O и калия К2O получают, прокаливая пероксиды с соответствующими металлами, например:

Гидроксиды МОН — твёрдые белые вещества. Очень гигроскопичны. Хорошо растворяются в воде с выделением большого количества теплоты. Их относят к щелочам, они проявляют ярко выраженные свойства сильных растворимых оснований: взаимодействуют с кислотами, кислотными оксидами, солями, амфотерными оксидами и гидроксидами (запишите уравнения соответствующих реакций в молекулярной и ионной формах). Гидроксиды щелочных металлов образуются при взаимодействии щелочных металлов или их оксидов с водой (запишите уравнения соответствующих реакций).

Читайте также:
Как намывают золото из песка

Гидроксид натрия NaOH в технике известен под названиями едкий натр, каустическая сода, каустик. Техническое название гидроксида калия КОН — едкое кали.

Оба гидроксида — NaOH и КОН — разъедают ткани и бумагу, поэтому их называют также едкими щелочами.

Едкий натр применяют в больших количествах для очистки нефтепродуктов, в бумажной и текстильной промышленности, для производства мыла и волокон.

Едкое кали дороже и применяется реже. Основная область его применения — производство жидкого мыла.

Соли щелочных металлов — твёрдые кристаллические вещества ионного строения. Почти все соли натрия и калия растворимы в воде. Наиболее важные их соли — карбонаты, сульфаты и хлориды.

Na2CO3 — карбонат натрия, образует кристаллогидрат Na2CO3 • 10Н2O, известный под названием кристаллическая сода, которую применяют в производстве стекла, бумаги, мыла. Это средняя соль.

Вам в быту более известна кислая соль — гидрокарбонат натрия NaHCO3 (пищевая сода), которую применяют в пищевой промышленности, в медицине.

К2СO3 — карбонат калия, техническое название — поташ, используют в производстве жидкого мыла и для приготовления тугоплавкого стекла, а также в качестве удобрения.

Na2SO4 • 10H2O — кристаллогидратат сульфата натрия, техническое название — глауберова соль, применяют для производства соды и стекла и в качестве слабительного средства.

NaCl — хлорид натрия, или поваренная соль, хорошо известен вам из курса 8 класса. Хлорид натрия является важнейшим сырьём в химической промышленности, широко применяется в быту (рис. 52).

Рис. 52.
Применение хлорида натрия:
1—5 — производство химических веществ (соляной кислоты 1, гидроксида натрия 2, хлора 3, натрия 4, соды 5); 6 — для консервирования; 7 — приправа к пище; 8 — производство мыла

Ионы натрия и калия очень важны для живых организмов: Na + — главный внеклеточный ион, содержится в крови и лимфе, а К + — основной внутриклеточный ион. Они выполняют разные функции в организме, но предпочитают «работать» вместе. Соотношение концентраций этих ионов регулирует давление крови в живом организме; обеспечивает перемещение растворов солей из корней в листья растений.

Калий поддерживает работу сердечной мышцы, поэтому нехватка калия в организме отрицательно сказывается на здоровье человека. Калий необходим растениям, при его недостатке снижается интенсивность фотосинтеза.

Взрослый человек должен в сутки потреблять с пищей 3,5 г калия. С помощью соединений калия можно устранять отёки. В этом случае нужно увеличить потребление калия до 5 г в сутки.

Больше всего калия содержат курага, соя, фасоль, зелёный горошек, чернослив, изюм и некоторые другие продукты (рис. 53).

Рис. 53.
Калий поступает в организм человека с продуктами питания: 1 — чернослив; 2 — курага; 3 — фасоль; 4 — горох; 5 — соевые бобы

Соли калия широко используют в сельском хозяйстве в качестве калийных удобрений.

Соли натрия, как и сам натрий, окрашивают пламя в жёлтый цвет, а калий и его соли — в розово-фиолетовый. Проведём лабораторный опыт.

Читайте также:
Как назвать ювелирное изделие

Лабораторный опыт № 14
Окрашивание пламени солями щелочных металлов

Возьмите лучинку, закрепите на ней петельку или спираль из нихромовой проволоки. Обмакните петельку в соляную кислоту и прокалите в пламени спиртовки (пламя должно быть бесцветным). Затем погрузите петельку в раствор или сухую соль натрия и внесите её в пламя. В какой цвет оно окрашивается? Повторите все операции и для соли калия. Для наблюдения цвета пламени, окрашенного солями калия, желательно использовать синий светофильтр, поглощающий жёлтый цвет. Если в кабинете химии имеются соли лития, повторите опыт и для этих соединений.

Открытие щелочных металлов. Литий был открыт шведским химиком А. Арфведсоном в 1817 г. и по предложению Й. Берцелиуса назван литием (от греч. литое — камень), так как, в отличие от калия, который до тех пор находили только в золе растений, он был обнаружен в камне.

Натрий и калий были впервые получены английским химиком и физиком Г. Дэви в 1807 г. при электролизе едких щелочей. Й. Берцелиус предложил назвать элемент № 11 натрием (от араб, натрун — сода), а элемент № 19 по предложению У. Гилберта получил название «калий» (от араб, алкали — щёлочь).

Новые слова и понятия

  1. Строение атомов щелочных металлов.
  2. Химические свойства щелочных металлов: образование гидридов, хлоридов, сульфидов, пероксидов, оксидов, гидроксидов.
  3. Оксиды и пероксиды щелочных металлов.
  4. Едкие щёлочи.
  5. Соли: сода питьевая, сода кристаллическая, поташ, глауберова соль, поваренная соль.

Задания для самостоятельной работы

  1. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

  • Вычислите объём водорода (н. у.), который может быть получен при растворении в воде 11,5 г натрия, содержащего 2% примесей, если выход водорода составляет 95% от теоретически возможного.
  • Прочитайте сочинение, написанное ученицей 9 класса 531-й школы Москвы Наташей Фроловой (1991).
  • В большом семиэтажном доме, в подъезде щелочных металлов, на втором этаже жил Литий — самый лёгкий и беззаботный металл. Он, как и все щелочные металлы, очень активно взаимодействовал с кислородом, неметаллами, водородом и водой. Как и все, защищался от кислорода, но носил не керосиновую, а вазелиновую «шубу», так как был очень лёгким и всплывал в керосине.

    Но всё же Литий не был во всех отношениях похожим на своих собратьев: он был добр, щедр и прост. Он с охотой отдавал свои электроны и кислороду, и азоту, и многим другим элементам. Из-за этих-то особенностей Литий страдал, так как другие щелочные металлы, особенно такие хитрые, как Калий и Натрий, не давали ему прохода.

    Дело было в том, что, когда щелочные металлы горели в кислороде, каждые их два атома отдавали одной молекуле Кислорода два своих электрона — каждому атому по одному. Остальные электроны они припрятывали до поры до времени. Литий же был честен — отдавал молекуле Кислорода в два раза больше электронов, чем остальные металлы: на четыре атома Лития — четыре электрона. Да и с Азотом Литий взаимодействовал спокойно, при обычной температуре, не то что другие — при нагревании.

    Читайте также:
    Бракованное ювелирное изделие как добиться возврата денег

    И решили Натрий и Калий допытаться у Лития: почему он так поступает? Нет ли в его поведении каких-либо скрытых выгод?

    Спрашивает Натрий: «Почему ты, брат Литий, все свои электроны Кислороду отдаёшь? Не лучше ли делать так, как мы?» Отвечал Литий: «Я всегда рад помочь другим, не то что вы — жадничаете. Я рад, что в моём оксиде Кислород имеет свою обычную степень окисления -2, не то что —1 в ваших странных, ни на что не похожих пероксидах». Сказал так и ушёл восвояси.

    Долго стояли Натрий и Калий в раздумье, но так ничего и не поняли. И сейчас с Кислородом продолжают пероксиды образовывать. А оксиды состава М2O дают лишь тогда, когда их силой заставят, т. е. создадут соответствующие условия — нагреют пероксид (Na2O2) с таким же металлом-«жадиной» (Na)».

    Источник: tepka.ru

    Щелочные металлы. Характеристика, свойства. Соединения натрия, калия в природе, их применение. Калийные удобрения

    shhelochnyie-metallyi

    Сегодня разберем урок химии 11 — Щелочные металлы. Характеристика, свойства. Соединения натрия, калия в природе, их применение. Калийные удобрения.

    Щелочные металлы составляют главную подгруппу первой группы периодической системы – литий, натрий, калий, рубидий, цезий, франций.

    Общая характеристика. 1) Общая электронная конфигурация внешнего энергетического уровня – ns 1 ; 2) атомы щелочных металлов характеризуются низким значением энергии ионизации; 3) металлические свойства выражены у щелочных металлов особенно резко; 4) с возрастанием порядкового номера увеличивается легкость отдачи валентных электронов и усиливаются металлические свойства.

    Все металлы серебристого цвета, кроме цезия (желтый). Относятся к легким металлам. Очень мягкие – режутся ножом. Все щелочные металлы сильные восстановители. Реакционная способность возрастает в ряду литий – цезий.

    Самым активным является цезий, т. к. у него самый низкий потенциалионизации. Щелочные металлы энергично реагируют с большинством неметаллов, разлагают воду, бурно реагируют с растворами кислот. Комплексообразование для щелочных металлов не характерно. В природе в свободном виде не встречаются ввиду их чрезвычайной активности.

    Литий существенно отличается от остальных элементов группы: он не имеет р-орбиталей. По ряду свойств он ближе к магнию, чем к щелочным металлам. Наиболее промышленно важные металлы – это калий и натрий. Основные способы получения – электролиз расплавов их солей в смеси с KCl, CaCl2 (натрий) и NaCl (калий). Применяется также восстановление их оксидов, хлоридов, карбонатов алюминием, кремнием, кальцием, магнием при нагревании в вакууме:

    Химические свойства. Реагируют со многими неметаллами:

    2K + Cl2 → 2KCl; 2Na + S → Na2S

    2Na + 2HCl → 2NaCl + H2↑

    Соединения натрия, калия в природе, их применение.

    Находятся в природе только в виде соединений. Натрий — каменная соль NaCl, сильвинит NaCl ∙ KCl, глауберова соль Na 2SO 4 ∙10H2O, натриевая селитра NaNO3, в морской воде.

    Калийные удобрения. Природные вещества и продукты их переработки- сильвинит, хлорид и сульфат калия, калийная селитра KNO3, поташ K2CO3 в золе при сжигании растений.

    Щелочные металлы и их соединения – важнейшие компоненты различных химических производств. Они используются в металлотермическом производстве различных металлов, таких как Ti, Zr, Nb, Ta. Соединения натрия и калия находят применение в мыловарении (Na2CO3), производстве стекла (Na2CO3, K2CO3, Na2SO4, Li2O), используются для отбелки и дезинфекции (Na2O2), в качестве удобрений (KCl, KNO3). Из поваренной соли получают многие важные химические соединения: Na2CO3, NaOH, Cl2.

    Читайте также:
    Медицинское золото что это отзывы

    Калий улучшает водный режим растений, способствует обмену веществ и образованию углеводов, повышает морозо- и засухоустойчивость. Содержание калия выражается в пересчете на К2О. Стандартным считается удобрение, содержащее 41,6% К2О. Важнейшими калийными удобрениями являются хлорид и сульфат калия. Хлорид калия содержит 50-60% К2О и его получают из минералов, используя его особую растворимость. Сульфат калия содержит 45-52% К2О и получается следующим образом:

    Это был урок химии 11 — Щелочные металлы. Характеристика, свойства. Соединения натрия, калия в природе, их применение. Калийные удобрения.

    Источник: sovety-tut.ru

    Щелочи: определение, химические свойства, методы получения

    ЕГЭ по химии

    Щелочи – это небольшая группа неорганических веществ, относящихся к основным гидроксидам или основаниям. Для начала разберемся, какие вещества можно называть основаниями. Основания – это вещества, содержащие гидроксо-группу (‒OH), которая в неорганической химии (в случае с основаниями) пишется в конце молекулы, например: NaOH, Fe(OH)2, Ba(OH)2, но это определение не точное, ведь Fe(OH)3 и Zn(OH)2 имеют сходную формулу, однако, основаниями не являются. Точнее будет сказать, что основания – это гидроксиды, в которых металл находится в степени окисления «+1» или «+2» (кроме цинка и бериллия, образующих в степени окисления «+2» амфотерные оксиды и гидроксиды).

    Таблица 1. – Основания и амфотерные гидроксиды

    Это НЕ основания:

    Потому что содержат металл в степени окисления «+1» или «+2»

    Так как в этой группе есть гидроксиды, имеющие металл в степени окисления «+3», и два исключения — Zn(OH)2 и Be(OH)2. Все приведенные выше вещества являются амфотерными гидроксидами, а не основаниями

    Подробнее об отличиях понятий «гидроксиды» и «основания» можно прочитать в статье «Классификация гидроксидов и оснований»

    Кроме отличий в степени окисления, основания и амфотерные гидроксиды отличаются так же по реакционной способности. Так, амфотерные гидроксиды могут реагировать как с кислотами, так и с основаниями, а основания могут реагировать с кислотами, но не могут реагировать с другими основаниями. Подробнее о химических свойствах амфотерных гидроксидов можно прочитать в статье «Амфотерные гидроксиды. Получение, химические свойства, образование средних и комплексных солей»

    Чем отличаются щёлочи от остальных оснований?

    Основания можно разделить на две группы: растворимые и нерастворимые. Растворимые иначе называют щелочами. То есть щелочи – это растворимые основания (растворимые основные гидроксиды).

    Таблица 2. – Основания и щёлочи

    Место щелочей в классификации гидроксидов

    Щелочи – растворимые основания

    Щелочи – растворимые основания

    Как определить, является ли основание растворимым, то есть щелочью, если его нет в таблице растворимости?

    В состав щелочей входят металлы IА-группы Периодической Системы Д. И. Менделеева, а также кальций, стронций и барий.

    Полный список щелочей:

    NaOH – гидроксид натрия, едкий натр, гидроокись натрия, каустическая сода

    KOH – гидроксид натрия, едкое кали, гидроокись калия

    LiOH – гидроксид лития, гидроокись лития

    CsOH – гидроксид цезия, гидроокись цезия

    FrOH – гидроксид франция, гидроокись франция

    RbOH – гидроксид рубидия, гидроокись рубидия

    Ba(OH)2 – гидроксид бария, едкий барий, баритовая вода

    Читайте также:
    Часы guess женские как открыть

    Ca(OH)2 – гидроксид кальция, гашеная известь, известковое молоко, известковая вода.

    Sr(OH)2 – гидроксид стронция

    Остальные основания считаем нерастворимыми (кроме аммиака, образующего гидрат аммония, являющегося хоть и растворимым, но нестойким соединением). Гидроксид аммония, образующийся при пропускании аммиака через воду, можно представить в виде формулы NH4OH (лучше NH3·H2O – гидрат аммония) является растворимым (раствор называют нашатырным спиртом), однако щелочью это вещество не является.

    Гидроксид лития и гидроксид кальция растворяются не так хорошо, как другие основания, но все равно считаются щелочами.

    Задание в формате ЕГЭ с ответом:

    Установите соответствие между формулой вещества и классом/группой, к которому(-ой) это вещество принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

    1. щелочь
    2. нерастворимое основание
    3. амфотерный гидроксид

    Комментарий к заданию: Галлий, в представленном гидроксиде, имеет степень окисления +3, поэтому он относится к группе амфотерных гидроксидов. Гидроксид рубидия – щелочь, так как рубидий – элемент IА-группы. Гидроксид хрома – нерастворимое основание, так как хром в степени окисления +2 не является амфотерным, и не относится к щелочным или щелочноземельным металлам, поэтому не может образовать щелочь.

    Пример задания из КИМ ЕГЭ:

    Установите соответствие между формулой вещества и классом/группой, к которому(-ой) это вещество принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

    1. щелочь
    2. нерастворимое основание
    3. амфотерный гидроксид

    Комментарий к заданию: Стронций является щелочноземельным металлом (металлы IIА-группы, кроме магния и бериллия, образуют растворимые гидроксиды), поэтому образует щелочь. Гидроксид цинка вместе с гидроксидом бериллия входят в группу исключений и, несмотря на вторую валентность, образуют амфотерные гидроксиды. Гидроксид железа нерастворим и не входит в группу амфотерных веществ, он является нерастворимым основанием.

    Щёлочи, являясь сильными основаниями, диссоциируют в воде очень быстро, тогда как нерастворимые основания диссоциируют медленно, ступенчато:

    Диссоциация щелочей

    Диссоциация слабых оснований

    Fe(OH)2 = FeOH + + OH ‒ (I ступень)

    FeOH + = Fe 2+ + OH ‒ (II ступень)

    Диссоциация настолько быстрая, что ступенчатостью процесса можно пренебречь

    Диссоциация очень медленная, быстрее идет по первой ступени, по второй ступени практически не идёт

    Физические свойства щелочей

    Гидроксиды щелочных металлов (металлов IА-группы) – твердые бесцветные кристаллические вещества. Как уже было описано выше, большинство из них очень хорошо растворимы в воде. Гидроксиды щелочноземельных металлов хуже растворяются в воде.

    Химические свойства щелочей

    Основные свойства гидроксидов в Периодической системе возрастают справа налево и сверху вниз. Поэтому все щелочи, образованные металлами IА-группы сильнее щелочей, образованных металлами IIА-группы.

    Щелочи окрашивают фенолфталеин в малиновый цвет.

    Твёрдые щелочи и их концентрированные растворы разъедают живые ткани, поэтому работать с ними нужно в перчатках, а при растирании твёрдой щелочи в ступке необходимо надевать очки.

    1. Щелочи реагируют с кислотными оксидами, образуя либо соль и воду, либо кислую соль:

    Щелочь + кислотный оксид = соль + вода

    Щелочь + кислотный оксид = кислая соль

    Рассмотрим эти реакции на примере образования карбонатов и гидрокарбонатов.

    Для щелочей, содержащих одновалентный катион (катион в степени окисления «+1») справедлива общая схема реакции:

    Для щелочей, содержащих двухвалентный металл (катион в степени окисления «+2») справедлива общая схема реакции:

    Источник: onlineclass.space

    Рейтинг
    Загрузка ...