Простое вещество олово полиморфно. В обычных условиях оно существует в виде b-модификации ( белое олово), устойчивой выше 13,2°C. Белое олово — это серебристо-белый, мягкий, пластичный металл, обладающий тетрагональной элементарной ячейкой, параметры a=0.5831, c=0.3181 нм. Координационное окружение каждого атома олова в нем — октаэдр. Плотность b-Sn 7,29 г/см 3 . Температура плавления 231,9°C, температура кипения 2270°C.
При охлаждении, например, при морозе на улице, белое олово переходит в a-модификацию ( серое олово). Серое олово имеет структуру алмаза (кубическая кристаллическая решетка с параметром а = 0,6491 нм). В сером олове координационный полиэдр каждого атома — тетраэдр, координационное число 4. Фазовый переход b-Sn a-Sn сопровождается увеличением удельного объема на 25,6%, что приводит к рассыпанию олова в порошок. В старые времена наблюдавшееся во время сильных холодов рассыпание оловянных изделий называли «оловянной чумой». В результате этой «чумы» пуговицы на обмундировании солдат, их пряжки, кружки, ложки рассыпались, и армия могла потерять боеспособность.
Олово — Металл, РАЗРУШАЮЩИЙ САМ СЕБЯ!
Кристаллическая решетка обычного β-Sn (белого Олово) тетрагональная с периодами а = 5,813Å, с = 3,176Å; плотность 7,29 г/см 3 . При температурах ниже 13,2 °С устойчиво α-Sn (серое Олово) кубической структуры типа алмаза; плотность 5,85 г/см 3 . Переход β->α сопровождается превращением металла в порошок. tпл 231 ,9 °С, tкип 2270 °С. Температурный коэффициент линейного расширения 23·10 -6 (0-100 °С); удельная теплоемкость (0°С) 0,225 кдж/(кг·К), то есть 0,0536 кал/(г·°С); теплопроводность (0°С) 65,8 вт/(м·К.), то есть 0,157 кал/(см·сек·°С); удельное электрическое сопротивление (20 °С) 0,115·10 -6 ом·м, то есть 11,5·10 -6 ом·см.
Предел прочности при растяжении 16,6 Мн/м 2 (1,7 кгс/мм 2 ); относительное удлинение 80-90%; твердость по Бринеллю 38,3-41,2 Мн/м 2 (3,9-4,2 кгс/мм 2 ). При изгибании прутков олова слышен характерный хруст от взаимного трения кристаллитов.
Чистое олово обладает низкой механической прочностью при комнатной температуре (можно согнуть оловянную палочку, при этом слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга) и поэтому редко используется. Однако оно легко образует сплавы с большинством других черных и цветных металлов. Оловосодержащие сплавы обладают прекрасными антифрикционными свойствами в присутствии смазки, поэтому широко используются как материал подшипников.
Источник: www.allmetals.ru
Физические свойства олова
Олово – химический элемент подгруппы германия IV группы 5 периода периодической системы элементов Д. И. Менделеева. Природное олово состоит из десяти изотопов с массовыми числами: 112 (0,95 %), 114 (0,65 %), 115 (0,34 %), 116 (14,24 %), 117 (7,57 %), 118 (24,01 %), 119 (8,58 %), 120 (32,97 %), 122 (4,71 %), 124 (5,98 %). Последний изотоп слаборадиоактивен (период полураспада 1,5·10 17 лет).
Олово – мягкий металл, обладает высокой пластичностью, ковкостью и легкоплавкостью. Оно может быть прокатано до толщины слоя 0,005 мм.
Известны две аллотропные формы олова: β-обычное белое олово, устойчивое выше 13,2 °С, и α-серое олово, устойчивое ниже 13,2 °С. Выше 161 °С олово становится хрупким и может быть легко измельчено в порошок (лучше всего при температуре ∼200 °С).
Некоторые основные физические и механические свойства олова приведены в таблице 1.
Атомная масса | 118,69 |
Кристаллическая структура | α (кубическая) и β (тетрагональная) |
Плотность, кг/м 3 | 7300 |
Температура плавления, °С | 231,9 |
Температура кипения, °С | 2270 |
Температура превращения белого олова в серое, °С | 13,2 |
Скрытая теплота плавления, кал/г | 14,4 |
Скрытая теплота превращения, кал/г | 4,46 |
Объемные изменения при переходе серого олова в белое, % | 27 |
Удельная теплоемкость при 0-100 °С, кал/(г·°С) | 0,054 |
Теплопроводность, кал/(см·с·°С) | 0,157 |
Температурный коэффициент теплопроводности при 20-100 °С·10 3 | -0,7 |
Коэффициент линейного расширения | 22,4·10 -6 (твердое) |
Термическое расширение в жидком состоянии | 100·10 -6 |
Удельная электропроводность, м/Oм·мм 2 | 8,95 |
Удельное электросопротивление, Oм·мм 2 /м | 0,124 |
Температурный коэффициент электросопротивления | 0,0044 |
Электросопротивление в жидком состоянии (300 °С), Ом/см 3 | 49·10 -3 |
Поверхностное натяжение при 300 °С, дин/см | 526 |
Поверхностное натяжение при 500 °С, дин/см | 510 |
Стандартный электродный потенциал, В | -0,136 |
Электрохимический эквивалент (двухвалентный), г/А·ч | 2,21 |
Модуль упругости (при -180 °С), кгс/мм 2 | 6500 |
Модуль упругости (при 0 °С), кгс/мм 2 | 5500 |
Модуль упругости (при 100 °С), кгс/мм 2 | 4800 |
Модуль упругости (при 200 °С), кгс/мм 2 | 3600 |
Модуль сдвига, кгс/мм 2 | 1680-1810 |
Предел упругости, кгс/мм 2 | 0,15 |
Предел текучести (литого), кгс/мм 2 | 1,2 |
Предел прочности при растяжении (литого), кгс/мм 2 | 1,9-2,1 |
Предел прочности при растяжении (отоженного), кгс/мм 2 | 1,7 |
Предел прочности при растяжении (тянутого), кгс/мм 2 | 2,5 |
Сопротивление срезу (литого), кгс/мм 2 | 2,0 |
Относительное удлинение (литого), % | 45-60 |
Относительное удлинение (отоженного), % | 80-90 |
Относительное сужение, % | 75 |
Линейная усадка, % | 2,7 |
Твердость HB (литого), кгс/мм 2 | 4,9-5,2 |
Твердость HB (нагартованного), кгс/мм 2 | 40 |
Вязкость пуаз (при 301 °С) | 0,0168 |
Вязкость пуаз (при 750 °С) | 0,0095 |
Удельная магнитная восприимчивость | +0,025·10 -6 |
Температура, °С | 1492 | 1703 | 1968 | 2169 |
Давление паров, мм рт. ст. | 1 | 10 | 100 | 400 |
Температура, °С | 300 | 350 | 400 | 500 |
Поверхностное натяжение, дин/см | 526 | 522 | 518 | 510 |
Температура, °С | 235 | 250 | 280 | 330 |
Вязкость η × 100, П | 1,95 | 1,86 | 1,73 | 1,60 |
Температура, °С | 250 | 1100 | — | — |
Теплоемкость, кал/(г·°С) | 0,058 | 0,0758 | — | — |
Температура, °С | 231,9 | 400 | 600 | 1000 |
Электросопротивление, мкОм·см | 47,6 | 51,4 | 56,8 | 63,6 |
Температура, °С | 240 | 292 | 417 | 498 |
Теплопроводность, (см·с·°С) | 0,08 | 0,081 | 0,079 | 0,078 |
Температура, °С | 409 | 523 | 574 | 704 |
Плотность, кг/м 3 | 6834 | 6761 | 6729 | 6640 |
Зависимость олова от степени деформации и температуры отжига показана на рис. 1-4.
Литература
- Аналитическая химия олова / В.Б. Спиваковский. М.: Наука. 1975. – 250 с.
- Справочник металлурга по цветным металлам. Т.1 / Под ред. Н.Н. Мурача. М.: Металлургиздат. 1953. – 1154 с.
- Промышленные цветные металлы и сплавы / А.П. Смирягин, Н.А. Смирягина, А.В. Белова, М., Металлургия, 1974, 488 с.
- ГОСТ 860-75 Олово. Технические условия
Источник: weldworld.ru
Изделия из олова и другие области применения чистого металла, а также его различных сплавов
Олово
— пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (луженое железо) для изготовления тары, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов.Элемент состоит из 10 изотопов с массовыми числами 112, 114-120, 122, 124; последний слабо радиоактивен; изотоп 120Sn наиболее распространен (около 33%).
- Структура
- Свойства
- Запасы и добыча
- Происхождение
- Применение
- Классификация
- Физические свойства
- Оптические свойства
- Кристаллографические свойства
Смотрите так же:
— структура и физические свойства
СТРУКТУРА
Олово имеет две аллотропные модификации: a-Sn (серое олово) с гранецентрированной кубической кристаллической решеткой и b-Sn (обычное белое олово) с объемноцентрированной тетрагональной кристаллической решеткой. Фазовый переход b -> a ускоряется при низких температурах (-30° С) и в присутствии зародышей кристаллов серого олова; известны случаи, когда оловянные изделия на морозе рассыпались в серый порошок («оловянная чума»), но это превращение даже при очень низких температурах резко тормозится наличием мельчайших примесей и поэтому редко встречается, представляя скорее научный, чем практический интерес.
Что представляет собой
Олово – элемент периодической таблицы Менделеева.
Это легкий серебристо-белый блестящий металл. Состоит из десяти изотопов.
Оловянный куб
Олово относится к группе легких цветных металлов.
Международное обозначение – Sn (Stannum).
Мировая цена тонны сырья на Лондонской бирже металлов – $21 000.
СВОЙСТВА
Плотность b-Sn 7,29 г/см3, плотность a-Sn 5.85 г/см3,. Температура плавления 231,9°C, температура кипения 2270°C. Температурный коэффициент линейного расширения 23·10-6 (0-100 °С); удельная теплоемкость (0°С) 0,225 кдж/(кг·К), то есть 0,0536 кал/(г·°С); теплопроводность (0°С) 65,8 вт/(м·К.), то есть 0,157 кал/(см·сек·°С); удельное электрическое сопротивление (20 °С) 0,115·10-6ом·м, то есть 11,5·10-6 ом·см. Серое олово является диамагнетиком, а белое — парамагнетиком.
Предел прочности при растяжении 16,6 Мн/м2 (1,7 кгс/мм2); относительное удлинение 80-90%; твердость по Бринеллю 38,3-41,2 Мн/м2(3,9-4,2 кгс/мм2). При изгибании прутков олова слышен характерный хруст от взаимного трения кристаллитов.
Чистое олово обладает низкой механической прочностью при комнатной температуре (можно согнуть оловянную палочку, при этом слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга) и поэтому редко используется.
Значение для человека
Микроэлемент – участник метаболизма, содействует росту скелетных тканей.
Рацион
Оловом богаты продукты нескольких групп:
- Мясо – курятина, индюшатина, говядина, свинина.
- Молочные продукты, включая сыры твердых сортов.
- Бобовые.
- Овощи – картофель, свекла.
- Семечки подсолнечника.
Ежесуточно человеку необходимо 3-11 мг вещества. Их он получает из пищи. Избыток утилизируется естественным путем, поэтому отравление исключено.
Симптомы нехватки
Нехватка микроэлемента нарушает минеральный баланс организма.
Результатом становятся следующие симптомы:
- Немотивированное истощение.
- Торможение роста.
- Ухудшение слуха.
- Тусклость, ломкость, выпадение волос.
Дефицит элемента – явление редкое. Так же, как переизбыток.
Переизбыток
Случается у людей, контактирующих с веществом (добыча на рудниках, работа на металлургическом предприятии) или фанатов консервированных продуктов.
Консервная банка с оловянным покрытием
Целостность оболочки консервных банок при длительном хранении нарушается. Часть олова переходит в содержимое.
О перенасыщенности организма металлом сигнализируют:
- Металлический привкус во рту.
- Отсутствие аппетита, расстройство ЖКТ (рвота, диарея).
- Анемичность, мигрени, головокружения.
- Кожа воспаляется, бледнеет, становясь сероватой. На деснах появляется синюшность.
На эмоциональном плане это повышенная агрессивность, возбудимость.
ЗАПАСЫ И ДОБЫЧА
В России запасы оловянных руд расположены в Чукотском автономном округе (Пыркакайские штокверки; рудник/посёлок Валькумей, Иультин — разработка месторождений закрыта в начале 1990-х годов), в Приморском крае (Кавалеровский район), в Хабаровском крае (Солнечный район, Верхнебуреинский район (Правоурмийское месторождение)), в Якутии (месторождение Депутатское) и других районах.
ПРОИСХОЖДЕНИЕ
Основная форма нахождения олова в горных породах и минералах — рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах.
В общем можно выделить следующие формы нахождения олова в природе:
- Рассеянная форма: конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W — с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc — с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.
- Минеральная форма: олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует железо Fe+2: биотиты, гранаты, пироксены, магнетиты, турмалины и т. д. Эта связь обусловлена изоморфизмом, например, по схеме Sn+4 + Fe+2 → 2Fe+3. В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес.%) (особенно в андрадитах), эпидотах (до 2,84 вес.%) и т. д.
-
На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2+1Fe+2SnS4 или тиллита PbSnS2 и других минералов.
Физиологическое действие
О роли олова в живых организмах практически ничего не известно. В теле человека содержится примерно (1—2)· 10−4 % олова, а его ежедневное поступление с пищей составляет 0,2—3,5 мг. Металлическое олово не токсично, что позволяет применять его в пищевой промышленности. Олово представляет опасность для человека в виде паров и различных аэрозольных частиц, пыли.
При воздействии паров или пыли олова может развиться станноз — поражение легких. Станнан (оловянистый водород) — сильнейший яд. Также очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м3, ПДК олова в пищевых продуктах 200 мг/кг, в молочных продуктах и соках — 100 мг/кг. Токсическая доза олова для человека — 2 г.
Вредные примеси, содержащиеся в олове в обычных условиях хранения и применения, в том числе в расплаве при температуре до 600 °C, не выделяются в воздух рабочей зоны в объёмах, превышающих предельно допустимую концентрацию в соответствии с ГОСТ. Длительное (в течение 15—20 лет) воздействие пыли олова оказывает фиброгенное воздействие на лёгкие и может вызвать заболевание работающих пневмокониозом.
ПРИМЕНЕНИЕ
Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов.
Важнейший сплав олова — бронза (с медью). Другой известный сплав — пьютер — используется для изготовления посуды. Для этих целей расходуется около 33 % всего добываемого олова.
До 60 % производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb3Sn. Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («поталь»).
Искусственные радиоактивные ядерные изомеры олова 117mSn и 119mSn — источники гамма-излучения, являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии. Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.
Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана. Двуокись олова — очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла. Смесь солей олова — «жёлтая композиция» — ранее использовалась как краситель для шерсти.
Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении, по сравнению со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей емкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже. Исследуются изолированные двумерные слои олова (станен), созданные по аналогии с графеном.
Олово (англ. Tin) — Sn
Молекулярный вес | 118.71 г/моль |
Происхождение названия | от ср. древневерхненемецкого elo — «жёлтый», лат. albus — «белый», так что металл назван по цвету |
IMA статус | действителен, описан впервые до 1959 (до IMA) |
Сплавы
По своей классификации оловянные сплавы делятся на припои, подшипниковые и легкоплавкие.
- Баббиты. В них добавляют свинец, медь, сурьма. Баббиты могут иметь легирующие присадки. Маркировки баббитов: Б88, Б83, Б83С.
- Бронза — сплав меди с оловом. Любая бронза содержит небольшие добавки фосфора, цинка, свинца, никеля и других элементов. Марки бронзы: Бр ОФ 6,5-0,15; Бр.ОЦ 4-3; Бр.ОЦ10-2; Бр.ОФ 10-1; Бр.ОНС 11-4-3.
- Пьютер. Сплав с висмутом, сурьмой, медью, изредка со свинцом.
- Припои. Бывают твердые и легкоплавкие. В сплав добавляют свинец и другие элементы. Марки припоев: ПОС-30, ПОС-40, ПОС-90.
Плюсы и минусы олова
К достоинствам относим:
- Нетоксичность, это позволяет использовать металл в пищевой промышленности, в производстве посуды.
- Достойная антикоррозионная устойчивость в агрессивных средах.
- Не реагирует с серой; поэтому используют везде, где металл «завернут» в резиновую или пластиковую изоляцию.
- Подвержен «оловянной чуме».
- Довольно высокая стоимость ограничивает широкое применение металла.
- Невысокая температура плавления (всего 232°С).
ФИЗИЧЕСКИЕ СВОЙСТВА
Цвет минерала | оловянный-белый, серо-белый |
Цвет черты | серо-белый |
Прозрачность | непрозрачный |
Блеск | металлический |
Спайность | нет |
Твердость (шкала Мооса) | 1.5 — 2 |
Прочность | ковкий |
Излом | зазубренный |
Плотность (измеренная) | 7.31 г/см3 |
Радиоактивность (GRapi) | |
Магнетизм | серое олово — диамагнетик, белое — парамагнетик |
Источник: safety-helmet.ru