В гальваническом элементе энергия химической реакции превращается в электрическую.Гальванический элемент состоит из двух металлических электродов, соединённых металлическим проводником (внешняя цепь) и помещённых в растворы собственных солей. Растворы соединены электролитическим мостиком. Растворы и электролитический мостик являются внутренней цепью элемента (рис. 4.6).
Схема медно-цинкового гальванического элемента может быть представлена следующим образом:
Рис. 4.6 ─ Графическое изображение медно-цинкового гальванического элемента
Потенциал цинкового электрода имеет более отрицательное значение, чем потенциал медного электрода, поэтому по внешнему проводнику электроны будут переходить от цинка к меди, что вызовет смещение равновесия Me 0 Me n + + n ē на цинковом электроде вправо, а на медном электроде ─ влево.
Отклонение потенциала электрода от его равновесного значения называется электрохимической поляризацией (поляризацией). При замыкании цепи потенциал медного электрода сдвигается в сторону более отрицательного значения за счёт поглощения электронов, это катодная поляризация. Потенциал цинкового электрода смещается в сторону более положительного значения, т.к. электроны перемещаются с цинкового электрода на катод, цинковый электрод подвергается анодной поляризации. Таким образом, процессы на электродах гальванического элемента будут иметь вид:
Электроды и гальванические элементы
Концентрация катионов цинка в растворе будет увеличиваться, а катионов меди ─ уменьшаться, что вызовет движение анионов SO4 2─ из раствора CuSO4 в раствор ZnSO4. Следовательно, по внешней цепи гальванического элемента перемещаются электроны, а по внутренней ─ ионы.
Электродвижущая сила гальванического элемента вычисляется как разность потенциалов катода и анода и зависит от факторов, которые влияют на величину электродного потенциала: стандартного электродного потенциала, концентрации раствора и температуры (уравнение Нернста).
Пример 4.3. Напишите схему гальванического элемента, составленного из железного электрода, помещённого в раствор нитрата железа с концентрацией 1,0 моль/л и серебряного электрода, помещённого в раствор нитрата серебра с концентрацией 0,01 моль/л. Напишите уравнения электродных процессов, токообразующую реакцию, рассчитайте электродные потенциалы и ЭДС.
Решение. Чтобы определить функцию электрода: анод или катод, следует вычислить значение электродного потенциала
В данном гальваническом элементе железный электрод будет анодом, т.к. имеет более отрицательное значение электродного потенциала, а серебряный электрод ─ катодом.
Принцип действия гальванического элемента: окисление на аноде, пространственно отделённом от катода, на котором происходит восстановление, используется в производстве химических источников тока.
Пример 4.4. При работе гальванического элемента, состоящего из серебряного и медного электродов, погруженных в 0,01 М растворы их нитратов
(Е°Ag + / Ag 0 = + 0,80 B; Е°Cu 2+ / Cu 0 = + 0,34 B)
Задачи на гальванический элемент. Продукты в ОВР. Ч.5-4.
на аноде протекает реакция, уравнение которой имеет вид:
1) Ag 0 − ē → Ag + 2) Ag + + ē → Ag 0 3) Cu 2+ + 2ē → Cu 0 4) Cu 0 − 2ē → Cu 2+
Решение. В данном гальваническом элементепотенциал медного электрода менее положителен, он будет поляризоваться анодно и на нём будет протекать процесс окисления меди.
Источник: studopedia.org
СХЕМА РАБОТЫ ГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА И ТИПОВЫЕ ЗАДАЧИ
Фундаментальные законы физики и химии, и в том числе, закон сохранения массы и энергии вещества, находят свое подтверждение на уровне перемещения мельчайших частиц – электронов, массами которых в химии обычно пренебрегают.
Речь идет об окислительно-восстановительных процессах, сопровождающихся переходом электронов от одних веществ (восстановителей) к другим (окислителям). Причем вещества могут обмениваться электронами, непосредственно соприкасаясь друг с другом.
Однако существует множество случаев, когда прямого контакта веществ не происходит, а процесс окисления-восстановления все равно идет. А если он идет самопроизвольно, то при этом еще и энергия выделяется. Ее человек с успехом использует для выполнения электрической работы.
Реализуется такая возможность в гальваническом элементе, схема работы которого, а также расчеты, связанные с ним, рассматриваются в данной статье.
Простейший гальванический элемент: схема работы
Гальванический элемент – это прибор, позволяющий при посредстве химической реакции получить электрическую энергию.
Пластинка металла и вода: простые взаимоотношения
Давайте сначала разберемся, что происходит с пластинкой металла, если опустить ее в воду?
Процесс схож с диссоциацией соли: диполи воды ориентируются к ионам металла и извлекают их из пластины. Но почему же тогда не происходит растворения самой пластины в воде? Все дело в строении кристаллической решетки.
Кристаллы соли состоят из катионов и анионов, поэтому диполями воды извлекаются из решетки и те, и другие.
У металла же кристаллическая решетка представлена атомами-ионами. Внутри нее всегда происходит превращение атомов в катионы за счет отщепления валентных электронов и обратный процесс: катионы снова превращаются в атомы, присоединяя электроны. Электроны являются общими для всех ионов и атомов, присутствующих в кристаллической решетке металла.
Процессы внутри металлической кристаллической решетки в обобщенном виде можно показать так:
В итоге, вода, окружающая пластинку – это уже не собственно вода, а раствор, составленный из молекул воды и перешедших в нее из пластины ионов металла. На пластине же возникает избыток электронов, которые скапливаются у ее поверхности, так как сюда притягиваются гидратированные катионы металла.
Возникает так называемый двойной электрический слой.
Бесконечно катионы металла с пластины в раствор уходить не будут, поскольку существует и обратный процесс: переход катионов из раствора на пластину. И он будет идти до тех пор, пока не наступит динамическое равновесие:
На границе раздела «металлическая пластина – раствор» возникает разность потенциала, которая называется равновесным электродным потенциалом металла.
Пластинка металла и раствор его соли: к чему приводит такое соседство
А что произойдет, если металлическую пластинку поместить не в воду, а в раствор соли этого же металла, например, цинковую пластинку Zn в раствор сульфата цинка ZnSO4?
В растворе сульфата цинка уже присутствуют катионы цинка Zn 2+ . Таким образом, при погружении в него цинковой пластины возникнет избыточное количество этих катионов, и уже известное нам равновесие (см. выше) сместится влево. Все это приведет к тому, что отрицательный заряд на пластинке будет иметь меньшее значение, так как меньшее количество катионов с нее будет переходить в раствор. Как результат – более быстрое наступление равновесия и менее значительный скачок потенциала.
Потенциал металла в растворе его же соли в момент равновесия записывают так:
Металл, погруженный в раствор электролита, называют электродом, обратимым относительно катиона.
Цинк – достаточно активный металл. А если речь будет идти о медной пластинке Cu, погруженной в раствор, например, сульфата меди (II) CuSO4?
Медь – металл малоактивный. Двойной электрический слой, конечно же, появится и в этом случае. Но! Катионы из пластинки в раствор переходить не будут. Наоборот, катионы меди (II) Cu 2+ из раствора соли начнут встраиваться в кристаллическую решетку пластинки и создавать положительный заряд на ее поверхности.
Сюда же подойдут сульфат-анионы SO4 2- и создадут вокруг нее отрицательный заряд. То есть распределение зарядов в данном случае будет совершенно противоположным, чем на цинковой пластинке.
Это общая закономерность: пластинки из малоактивных металлов при погружении в раствор их солей всегда заряжаются положительно.
Как устроен гальванический элемент Даниэля-Якоби, или Так где же все-таки электрический ток?
Известно, что электрический ток – это направленное движение заряженных частиц (электронов).
На активном металле скапливаются электроны, а поверхность малоактивного металла, заряжается положительно. Если соединить проводником (например, металлической проволокой) оба металла, то электроны с одного перейдут на другой, а двойной электрический слой перестанет существовать. Это будет означать возникновение электрического тока.
Причем, ток возникает за счет окислительно-восстановительного процесса: активный металл окисляется (так как отдает электроны малоактивному), а малоактивный металл восстанавливается (так как принимает электроны от активного). Металлы друг с другом не соприкасаются, а взаимодействуют через посредника: внешнего проводника. Данная схема и есть схема гальванического элемента. Именно так устроен и работает гальванический элемент Даниэля-Якоби:
В схеме элемента показан «солевой мостик». Он представляет собой трубку, в которой присутствует электролит, не способный взаимодействовать ни с электродами (катодом или анодом), ни с электролитами в пространствах у электродов. Например, это может быть раствор сульфата натрия Na2SO4. Подобный мостик нужен для того, чтобы уравновешивать (нейтрализовать) заряды, образующиеся в растворах гальванического элемента.
Таким образом, возникшая электрическая цепь замыкается: анод → проводник с гальванометром → катод → раствор в катодном пространстве → «солевой мостик» → раствор в анодном пространстве → анод.
Анод – электрод, на котором происходит окисление (цинковая пластинка):
Электроны цинка Zn отправляются по внешней цепи (то есть по проводнику) на катод.
Катод – электрод, на котором происходит восстановление (медная пластинка):
Катионы меди Cu 2+ , пришедшие на пластинку из раствора сульфата меди (II), получают электроны цинкового анода.
В общем виде весь процесс окисления-восстановления в гальваническом элементе выглядит так:
Для любого гальванического элемента можно составить запись в виде схемы. Например, для приведенного элемента Даниэля-Якоби она будет выглядеть так:
3 – скачок потенциала (граница раздела фаз);
4 – электролит в анодном пространстве;
5 – электролит в катодном пространстве;
6 – граница между растворами (солевой мостик).
Или сокращенно:
Типовые задачи на схему гальванического элемента: примеры решения
По вопросу, рассмотренному в данной статье, возможны два основных вида задач.
Задача 1. Составьте схему гальванического элемента, в котором протекает реакция:
Решение:
Задача 2. Напишите электродные и суммарные уравнения реакций, протекающих в гальваническом элементе:
Решение:
Итак, разобрав принцип работы гальванического элемента, мы научились записывать схему его работы и определять основные процессы на электродах.
Чтобы самыми первыми узнавать о новых публикациях на сайте, присоединяйтесь к нашей группе ВКонтакте.
Источник: himzadacha.ru
Составление схемы двух гальванических элементов, в одном из которых медь служила бы катодом, а в другом — анодом
Задача 650.
Составить схемы двух гальванических элементов, в одном из которых медь служила бы катодом, а в другом — анодом. Написать уравнения реакций, происходящих при работе этих элементов, и вычислить значения стандартных Э. Д.С.
Решение:
а) Гальванический элемент, в котором медь служит катодом.
Схема гальванического элемента:
Вертикальная линейка обозначает поверхность раздела между металлом и раствором, а две линейки – границу раздела двух жидких фаз – пористую перегородку (или соедини-тельную трубку, обычно, заполненную раствором электролита). Железо имеет меньший потенциал (-0,44В) и является анодом, на котором протекает окислительный процесс:
Медь, потенциал которой +0,34 В, — катод, т. е. электрод, на котором протекает восстановительный процесс:
Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного и катодного процессов, получим:
Fe 0 + Cu 2+ = Fe 2+ + Cu 0
Для определения ЭДС гальванического элемента необходимо из потенциала катода вычесть потенциал анода, т е. при вычислении ЭДС элемента меньший электродный потенциал вычитается из большего (в алгебраическом смысле), получим:
E1 = Cu — Fe;
E1 = -44 — (+33) = -0,78B.
б) Гальванический элемент, в котором медь служит катодом.
Схема гальванического элемента:
Медь имеет меньший потенциал (+0,34В) и является анодом, на котором протекает окислительный процесс:
Ртуть, потенциал которой +0,86В, — катод, т.е. электрод, на котором протекает восстановительный процесс:
Рассчитаем ЭДС данного элемента:
E2 = Hg — Cu;
E2 + +o,86 — (+0,34) = 0,52B.
Задача 651.
В каком направлении будут перемещаться электроны во внешней цепи следующих гальванических элементов:
если все растворы электролитов одномолярные? Какой металл будет растворяться в каждом из этих случаев?
Решение:
а)
Поскольку потенциал магния меньше потенциала свинца, то магниевый электрод будет служить отрицательным полюсом (электродом) и электроны будут перемещаться во внешней цепи от магниевого электрода к свинцовому электроду. Следовательно, магний в данном случае будет растворяться.
б)
Поскольку потенциал свинца меньше потенциала меди, то свинцовый электрод будет служить отрицательным полюсом (электродом) и электроны будут перемещаться во внешней цепи от свинцового электрода к медному электроду. Следовательно, свинец в данном элементе будет растворяться.
в)
Поскольку потенциал меди меньше потенциала серебра, то медный электрод будет служить отрицательным полюсом (электродом) и электроны будут перемещаться во внешней цепи от медного электрода к серебряному электроду. Следовательно, медь в данном элементе будет растворяться.
Ответ: а) от Mg к Pb; б) от Pb к Cu; в) от Cu к Ag.
- Вы здесь:
- Главная
- Задачи
- Химия-Глинка
- Свойства кислородных кислот галогенов. Задачи 823- 826
Источник: buzani.ru