Сегодня мы поговорим о самой странной и недооценённой, на мой взгляд, элементарной частице. Это фотон.
Слово «фотон» появилось в обиходе физиков и лириков примерно через двадцать лет после теоретического предсказания существования этой частицы. Его (предсказание) представил свету в 1905 году Альберт Эйнштейн.
В конце 19 века уравнения Максвелла необычайно элегантным и общепонятным образом объясняли все явления электрического, магнитного и электромагнитного взаимодействия. Почти все.
Согласно уравнениям Максвелла, свет (в этой статье я буду использовать слово «свет» вместо «электромагнитное излучение») являлся волной. Это согласовывалось с различными предыдущими экспериментами, такими как существование интерференции и дифракции, продемонстрированное Юнгом и другими. Энергия, которую нёс, например, луч света, зависела от его интенсивности.
То есть, если у Вас в левом кармане лежит фонарик со слабой лампочкой, а в правом ещё один с более мощной лампочкой, то поздравляю! У Вас есть два фонарика с лампочками! (Шутка). Это означает, что энергия света второго фонарика больше, чем первого. И это единственное, что определяет процессы, связанные со светом.
ЕГЭ физика. Фотоэффект: красная граница, запирающее напряжение, ток насыщения
Однако были вещи, которые никак не складывались. И эти вещи привели, в итоге, к появлению квантовой физики. Но сегодня мы не будем говорить об этом, потому что это не это является сегодняшней нашей целью.
Кто открыл фотон?
Давайте сосредоточимся на конкретном эксперименте: фотоэлектрическом эффекте. В начале 20 века уже было известно, что если взять кусок определённого металла и посветить на него, то иногда свет выбивает электроны из этого металла. То есть свет порождает электричество . Отсюда и название эффекта, кстати.
Логично было бы предположить, что если Вы имеете приличный кусок подходящего металла, и посветите на него фонариком и увидите, что ничего не происходит, то попытаетесь добиться эффекта, добавив энергии. Просто нужен более мощный фонарик! Итак, в дело идёт армейский прожектор мощностью 40 кВт. Однако того, что кажется таким логичным, снова не происходит. И тот факт, что ничего не происходит, что какой бы мощной ни была лампочка, эффекта всё равно нет, вгонял физиков начала прошлого века в депрессивное состояние.
Учёные наблюдали то, что не могли объяснить: если металл освещается красным светом – фотоэффекта не происходит. И даже если мощность лампочки умножить на миллион, ни один электрон не выйдет из металла. Но если, например, работать с синей лапочкой, то какой бы слабой она ни была, электроны её свету не сопротивляются. Да, чем слабее лампочка, тем меньше электронов выходит. Но они выходят!
Эйнштейн дал очень изящное и простое объяснение этому явлению. Для этого он расширил идею Планка о квантовании энергии. Свет, по Эйнштейну, состоит из точечных частиц, называемых «квантами света». Эти частицы имеют определённую энергию, которая зависит исключительно от частоты света (чем выше частота, тем выше энергия каждого кванта).
9 класс. Явление фотоэффекта.
Так что кванты синего света имели больше энергии, чем кванты красного света. Когда лампочка очень мощная, это происходит потому, что она испускает много световых квантов. Но энергия каждого из них остаётся той, которая соответствует цвету. Следовательно, фотоэлектрический эффект зависит не от мощности лампочки, а от длины волны квантов света.
Красная лампочка не производит фотоэффекта потому, что кванту света просто не хватает энергии. Однако если фонарик излучает синий свет, он производит фотоэффект. Даже если фонарик светит не очень ярко, каждый из ярких квантов удаляет электрон. Хм. Вроде всё сходится.
Это объяснение «квантов света», написанное, кстати, в том же году, что и статья о броуновском движении, а также специальная теория относительности принесли Эйнштейну Нобелевскую премию по физике в 1921 году.
В 1926 году для частицы было принято название «фотон», предложенное Гилбертом Н. Льюисом и происходящее от греческого «свет» в сочетании с окончанием -on, которое использовалось для электрона. Так что фотон – это «частица света».
Источник: dzen.ru
Остались вопросы?
Помогите решить задачи.1)Автобус,двигаясь со скоростью 72км/ч,начинает тормозить с ускорением 3м/с2 и останавливается. Чему равно время торможе .
ДАЮ 60 БАЛЛОВШкольник решил испытать кастрюлю на плавучесть. Он поместил цилиндрическую кастрюлю массой 2.4 кг, высотой 30 см и площадью дна 8 .
Прямолинейное движение двух тел задано уравнениями x1(t) = k1t + b1 и x2(t) = k2t+ b2, где x1(t) и x2(t) – координаты в момент времени t первог .
СРОЧНО!! ДАЮ 30 БАЛЛОВЭкспериментатор Глюк добыл немного неизвестного науке вещества в твёрдомсостоянии, поместил его в калориметр и радостно н .
Движение точки на ободе колеса радиусом R, катящегося с угловой скоростью ω без скольжения по горизонтальной поверхности описывается уравнениям .
Источник: znanija.info
Работа выхода электронов из золота Авых=4,59 эВ. Найдите красную границу фотоэффекта для золота.
Найдите правильный ответ на вопрос ✅ «Работа выхода электронов из золота Авых=4,59 эВ. Найдите красную границу фотоэффекта для золота. . » по предмету Физика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Новые вопросы по физике
Проводники сообщили заряд 1*10’9 кл, его зарядили до потенциала 100 в. Определить электроемкость проводника?
Две стальные проволоки, имеющие одинаковые длины, но разные сечения, включены параллельно в цепь. В какой из них будет выделяться большее количество теплоты за одно и то же время?
Что определяется выражением Q/m
Скорость автобуса равна20 м/с а скорость гоночного автомобиля 360 км/ч. Во сколька раз скорость гоночного автомобиля больше скорости автобуса
Кубик со стороной 2 см имеет массу 16 грамм. Найти плотность. Ответ дать в системе СИ
Главная » Физика » Работа выхода электронов из золота Авых=4,59 эВ. Найдите красную границу фотоэффекта для золота.
Источник: iotvet.com