Авторы открытия спектрального анализа (1859) — Бунзен и Кирхгофф — немедленно применили его в качестве вспомогательного метода при химическом анализе минералов и уже через год сообщили об открытии ими цезия. Продолжая исследования, они заинтересовались минералом лепидолитом (фторсиликат лития и алюминия) и, переработав 150 кг саксонского лепидолита, из фракции, содержащей щелочные металлы, выделили с помощью хлорплатиновой кислоты (H2PtCl6) двойные хлорплатинаты калия, цезия и рубидия. То обстоятельство, что калийные соли лучше растворяются в воде, чем рубидиевые и цезиевые, помогло исследователям отделить последние от калиевых солей. При спектроскопическом анализе остатка после удаления калия обнаружились две новые красные линии в красной части спектра. Эти линии Бунзен и Кирхгофф правильно отнесли к новому металлу, который назвали рубидием (лат. rubidus — красный) из-за цвета его спектральных линий. Получить рубидий в виде металла Бунзену удалось в 1863 г.
Происхождение названия [ ]
Название дано по цвету наиболее характерных красных линий спектра (от лат. rubidus— красный, тёмно-красный).
Рубидий — металл, который дороже золота.
Получение [ ]
Физические свойства [ ]
Химические свойства [ ]
Применение рубидия многообразно и несмотря на то что по ряду своих областей применения он уступает своими важнейшими физическими характеристиками цезию, тем не менее этот редкий щелочной металл играет важную роль в современной технологии. Можно отметить следующие области применения рубидия: катализ, электронная промышленность, специальная оптика, атомная промышленность, медицина.
Рубидий используется не только в чистом виде, но и в виде ряда сплавов и химических соединений. Важно отметить что рубидий имеет очень хорошую и благоприятную сырьевую базу, но при этом положение в обеспеченности ресурсами гораздо более благоприятно нежели в случае с цезием и рубидий способен занять еще более важную роль например в катализе (где с успехом себя зарекомендовал).
Изотоп рубидий-86 широко используется в гамма-дефектоскопии, измерительной технике, а так же при стерилизации ряда важных лекарств и пищевых продуктов. Рубидий и его сплавы с цезием это весьма перспективный теплоноситель и рабочая среда для высокотемпературных турбоагрегатов (в этой связи рубидий и цезий в последние годы преобрели важное значение, и чрезвычайная дороговизна металлов уходит на второй план по отношению к возможностям резко увеличить КПД турбоагрегатов, а значит и снизить расходы топлива и загрязнение окружающей среды). Применяемые наиболее широко в качестве теплоносителей системы на основе рубидия это тройные сплавы:натрий-калий-рубидий, и натрий-рубидий-цезий.
В катализе рубидий используется как в органическом так и неорганическом синтезе. Каталитическая активность рубидия используется в основном для переработки нефти на ряд важных продуктов. Ацетат рубидия например используется для синтеза метанола и целого ряда высших спиртов из водяного газа, что в свою очередь чрезвычайно актуально в связи с подземной газификацией угля и производстве искусственного жидкого топлива для автомобилей и реактивного топлива. Ряд сплавов рубидия с теллуром обладают более высой чувствительностью в ультрафиолетовой области спектра чем соединения цезия, и в связи с этим он способен в этом случае составить конкуренцию цезию-133 как материал для фотопреобразователей. В составе специальных смазочных композиций (сплавов), рубидий применяется как высокоэффективная смазка в вакууме (ракетная и космическая техника).
Цезий — самый активный металл на Земле!
Гидроксид рубидия применяется для приготовления электролита для низкотемпературных ХИТ а так же в качестве добавки к раствору гидроксида калия для улучшения его работоспособности при низких температурах и повышения электропроводности электролита. В гидридных топливных элементах находит применение металлический рубидий.
Хлорид рубидия в сплаве с хлоридом меди находит применение для измерения высоких температур (до 400°C).
Плазма рубидия находит применение для возбуждения лазерного излучения.
Хлорид рубидия применяется в топливных элементах в качестве электролита, то же можно сказать и о гидроксиде рубидия, который очень эффективен как электролит в топливных элементах, использующих прямое окисление угля.
Биологическая роль [ ]
Цезий и рубидий относят к малоизученым микроэлементам. Эти элементы находятся в окружающей среде и поступают в организм различными путями, в основном с пищей. Установлено их постоянное наличие в организме. Однако до сих пор эти элементы не считаются биотическими.
Рубидий и цезий найдены во всех исследованных органах млекопитающих и человека. Поступая в организм с пищей, они быстро всасываются из желудочно-кишечного тракта в кровь. Средний уровень рубидия в крови составляет 2,3—2,7 мг/л, причем его концентрация в эритроцитах почти в три раза выше, чем в плазме. Рубидий и цезий весьма равномерно распределяется в органах и тканях, причем, рубидий, в основном, накапливается в мышцах, а цезий поступает в кишечник и вновь реабсорбируется в нисходящих его отделах.
Известна роль рубидия и цезия в некоторых физиологических процессах. В настоящее время установлено стимулирующее влияние этих элементов на функции кровообращения и эффективность применения их солей при гипотониях различного происхождения. Исходя из выраженного гипертензивного и сосудосуживающего действия, соли цезия еще в 1888 г. впервые были применены С. С. Боткиным при нарушениях функции сердечно-сосудистой системы. В лаборатории И. П. Павлова С. С. Боткиным было установлено, что хлориды цезия и рубидия вызывают повышение артериального давления на длительное время и, что это действие связано, главным образом, с усилением сердечно-сосудистой деятельности и сужением периферических сосудов.
Установлено адреноблокирующее и симпатомиметическое действие солей цезия и рубидия на центральные и периферические адренореактивные структуры, которое особенно ярко выражено при подавлении тонуса симпатического отдела центральной нервной системы и дефиците катехоламинов. Солям этих металлов свойственен, главным образом, бета-адреностимулирующий эффект.
Хлорид рубидия и хлорид цезия участвуют в газовом обмене, активируя деятельность окислительных ферментов, соли этих элементов повышают устойчивость организма к гипоксии.
Изотопы [ ]
В природе существуют два изотопа рубидия: стабильный 85 Rb и бета-радиоактивный 87 Rb (его период полураспада равен 4,923×10 10 лет, это один из изотопов- Ссылки [ ]
- Рубидий на Webelements
- Рубидий в Популярной библиотеке химических элементов
Литература [ ]
- Перельман. Ф. М. Рубидий и цезий.М., Изд-во АН УССР, 1960. 140 стр. с илл.
- Плющев В.Е., Степин Б.Д. Химия и технология соединений лития, рубидия и цезия.- М.-Л.: Химия, 1970.- 407 с
H | He | ||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe |
Cs | Ba | * | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
Fr | Ra | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup | Uuh | Uus | Uuo |
* | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||
** | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
Это незавершённая статья по химии. Вы можете помочь проекту, исправив и дополнив её. |
af:Rubidium cs:Rubidium cy:Rwbidiwm da:Rubidium de:Rubidium en:Rubidium fi:Rubidium fr:Rubidium id:Rubidium is:Rúbidín ku:Rûbîdyûm la:Rubidium lb:Rubidium nl:Rubidium nn:Rubidium no:Rubidium pl:Rubid sv:Rubidium tr:Rubidyum wa:Rubidiom
Источник: science.fandom.com
Рубидий
Руби́дий(лат. Rubidium), Rb, химический элемент I группы короткой формы (1-й группы длинной формы) периодической системы ; атомный номер 37; атомная масса 85,4678; относится к щелочным металлам . В природе встречается в виде смеси изотопов : стабильного 85 Rb (72,165 %) и радиоактивного 87 Rb (27,85 %, период полураспада Т1/24,75·10 10 лет; β-излучатель, превращается в 87 Sr – на этом основан рубидий-стронциевый метод геохронологии ); искусственно получены изотопы с массовыми числами 72–102.
Историческая справка
Открыт в 1861 г. Р. Бунзеном и Г. Кирхгофом при спектральном исследовании солей, выделенных из минеральных вод; назван по цвету характерных линий в спектре (лат. rubidus – тёмно-красный).
Распространённость в природе
Содержание рубидия в земной коре 7,8·10 –3 % по массе. Собственных минералов не образует, в природе находится в рассеянном состоянии. Встречается в виде примеси в минералах калия ( карналлит , сильвин ) и в алюмосиликатах ( лепидолит , циннвальдит и др.); присутствует в минералах цезия ( поллуцит ); находится в озёрной и морской воде, входит в состав вод многих минеральных источников.
Образец рубидия. Образец рубидия.
Свойства
Конфигурация внешней электронной оболочки атома рубидия 5s 1 ; в соединениях проявляет степень окисления +1; энергия ионизации Rb 0 →Rb + 403,0 кДж/моль; сродство к электрону 46,88 кДж/моль, электроотрицательность по Полингу 0,8; атомный радиус 248 пм, ионный радиус 152 пм (координационное число 6).
В свободном состоянии рубидий – мягкий, легкоплавкий серебристо-белый металл (кристаллическая решётка кубическая объёмноцентрированная), при комнатной температуре имеет почти пастообразную консистенцию; tпл39,32 °C, tкип687,2 °C, пары́ окрашены в зеленовато-синий цвет; плотность 1532 кг/м 3 (твёрдый, при 0 °C), 1471,8 кг/м 3 (жидкий, при температуре плавления).
Рубидий обладает высокой реакционной способностью. На воздухе мгновенно окисляется с воспламенением, образуя надпероксид RbO2с примесью пероксида Rb2O2. При ограниченном доступе кислорода окисляется до оксида Rb2O. С водой реагирует со взрывом (продукты – гидроксид RbOH и Н2).
Реагирует с сухим Н2, образуя гидрид RbH, и с галогенами (образуются галогениды ). Взаимодействие рубидия с серой сопровождается взрывом (продукт – Rb2S). С жидким N2в электрическом разряде образует нитрид Rb3N. Известны амид, фосфид, силицид и германид, а также карбиды разного состава.
Рубидий взаимодействует с СО2, ССl4и СНСl3со взрывом, выше 300 °C разрушает стекло, восстанавливая SiO2до Si. Растворяется в жидком аммиаке (раствор имеет синий цвет, содержит сольватированные электроны и обладает электронной проводимостью). Рубидий образует сплавы со щелочными металлами , а также интерметаллиды (Аu, Hg, Cd, Ga, In, Sn, Pb, Bi и др.). Опасен в обращении, хранят рубидий в ампулах из стекла пирекс в атмосфере Аr или в стальных герметичных сосудах под слоем обезвоженного вазелинового или парафинового масла.
Получение и применение
Рубидий извлекают при комплексной переработке минерального сырья (например, при получении лития из лепидолита, цезия из поллуцита); объём производства рубидия и его соединений 2–4 т/год (2015). Металлический рубидий – компонент материала катодов для фотоэлементов и фотоэлектрических умножителей, геттер в вакуумных лампах, входит в состав смазочных композиций , используемых в реактивной и космической технике, применяется в гидридных топливных элементах, катализатор. Пары́ рубидия используют в разрядных электрических трубках, лампах низкого давления – источниках резонансного излучения, в чувствительных магнитометрах , стандартах частоты и времени (рубидиевый стандарт частоты). Соединения рубидия – компоненты специальных стёкол и керамики.
Аликберова Людмила Юрьевна . Первая публикация: Большая российская энциклопедия, 2015.
в 11:53 (GMT+3) Обратная связь
Информация
Области знаний: Общие вопросы химии Символ: Rb Атомный номер: 37 Группа элементов: Щелочные металлы Относительная атомная масса: 85,4678 а. е. м. Радиус атома: 248 пм Электроотрицательность: 0,82 ед. по шкале Полинга Агрегатное состояние: Твёрдое Плотность при н. у.: 1,532 г/см³ Температура плавления: 39,32 °C Температура кипения: 687,2 °C
Источник: bigenc.ru
РУБИДИЙ
РУБИДИЙ– (Rubidium) Rb, химический элемент 1-й (Ia) группы Периодической системы. Щелочной элемент. Атомный номер 37, относительная атомная масса 85,4678. В природе встречается в виде смеси стабильного изотопа 85 Rb (72,15%) и радиоактивного изотопа 87 Rb (27,86%) с периодом полураспада 4,8 . 10 10 лет. Искусственно получено еще 26 радиоактивных изотопов рубидия с массовыми числами от 75 до 102 и периодами полураспада от 37 мс (рубидий-102) до 86 дней (рубидий-83).
Также по теме:
Степень окисления +1.
Рубидий был открыт в 1861 немецкими учеными Робертом Бунзеном и Густавом Кирхгоффом и стал одним из первых элементов, открытых методом спектроскопии, который был изобретен Бунзеном и Кирхгоффом в 1859. Название элемента отражает цвет наиболее яркой линии в его спектре (от латинского rubidus – глубокий красный).
Спустя четверть века русский химик Николай Николаевич Бекетов предложил другой способ получения металлического рубидия – восстановлением его из гидроксида алюминиевым порошком. Он проводил этот процесс в железном цилиндре с газоотводной трубкой, которая соединялась со стеклянным резервуаром-холодильником. Цилиндр подогревался на газовой горелке, и в нем начиналась бурная реакция, сопровождавшаяся выделением водорода и возгонкой рубидия в холодильник. Как писал сам Бекетов, «рубидий гонится постепенно, стекая, как ртуть, и сохраняя даже свой металлический блеск вследствие того, что снаряд во время операции наполнен водородом».
Распространение рубидия в природе и его промышленное извлечение. Содержание рубидия в земной коре составляет 7,8·10 –3 %. Это примерно столько же, как для никеля, меди и цинка. По распространенности в земной коре рубидий находится примерно на 20-м месте, однако в природе он находится в рассеянном состоянии, рубидий – типичный рассеянный элемент.
Собственные минералы рубидия неизвестны. Рубидий встречается вместе с другими щелочными элементами, он всегда сопутствует калию. Обнаружен в очень многих горных породах и минералах, найденных, в частности, в Северной Америке, Южной Африке и России, но его концентрация там крайне низка. Только лепидолиты содержат несколько больше рубидия, иногда 0,2%, а изредка и до 1–3% (в пересчете на Rb2О).
Тем не менее, большую часть добываемого рубидия получают как побочный продукт при производстве лития из лепидолита. После выделения лития в виде карбоната или гидроксида рубидий осаждают из маточных растворов в виде смеси алюморубидиевых, алюмокалиевых и алюмоцезиевых квасцов MAl(SO4)2·12H2O (M = Rb, K, Cs). Смесь разделяют многократной перекристаллизацией.
Рубидий выделяют и из отработанного электролита, получающегося при получении магния из карналлита. Из него рубидий выделяют сорбцией на осадках ферроцианидов железа или никеля. Затем ферроцианиды прокаливают и получают карбонат рубидия с примесями калия и цезия. При получении цезия из поллуцита рубидий извлекают из маточных растворов после осаждения Cs3[Sb2Cl9]. Можно извлекать рубидий и из технологических растворов, образующихся при получении глинозема из нефелина.
Для извлечения рубидия используют методы экстракции и ионообменной хроматографии. Соединения рубидия высокой чистоты получают с использованием полигалогенидов.
Значительную часть производимого рубидия выделяют в ходе получения лития, поэтому появление большого интереса к литию для использования его в термоядерных процессах в 1950-х привело к уведичению добычи лития, а, следовательно, и рубидия и поэтому соединения рубидия стали более доступными.
Рубидий – один из немногих химических элементов, ресурсы и возможности добычи которого больше, чем нынешние потребности в нем. Официальная статистика по производству и использованию рубидия и его соединений отсутствует. Считают, что годовое производство рубидия составляет около 5 т.
Рынок рубидия очень мал. Активная торговля металлом не ведется, и рыночной цены на него нет. Цены, установленные компаниями, торгующими рубидием и его соединениями, различаются в десятки раз.
Характеристика простого вещества, промышленное получение и применение металлического рубидия. Рубидий – мягкий серебристо-белый металл. При обычной температуре он имеет почти пастообразную консистенцию. Плавится рубидий при 39,32° С, кипит при 687,2° С. Пары рубидия окрашены в зеленовато-синий цвет.
Рубидий обладает высокой реакционной способностью. На воздухе он мгновенно окисляется и воспламеняется, образуя надпероксид RbO2(с примесью пероксида Rb2O2):
С водой рубидий реагирует со взрывом c образованием гидроксида RbOH и выделением водорода: 2Rb + 2H2O = 2RbOH + H2.
Рубидий непосредственно соединяется с большинством неметаллов. Однако с азотом он в обычных условиях не взаимодействует. Нитрид рубидия Rb3N образуется при пропускании в жидком азоте электрического разряда между электродами, изготовленными из рубидия.
Рубидий восстанавливает оксиды до простых веществ. Он реагирует со всеми кислотами с образованием соответствующих солей, а со спиртами дает алкоголяты:
Рубидий растворяется в жидком аммиаке, при этом получаются синие растворы, содержащие сольватированные электроны и обладающие электронной проводимостью.
Со многими металлами рубидий образует сплавы и интерметаллические соединения. Соединение RbAu, в котором связь между металлами имеет частично ионный характер, является полупроводником.
Металлический рубидий получают, в основном, восстановлением соединений рубидия (обычно галогенидов), кальцием или магнием:
2RbCl + 2Ca = 2Rb + CaCl2
Rb2CO3+ 3Mg = 2Rb + 3MgO + C
Реакцию галогенида рубидия с магнием или кальцием проводят при 600–800° С и 0,1 Па. Продукт очищают от примесей ректификацией и вакуумной дистилляцией.
Можно получить рубидий электрохимическим способом из расплава галогенида рубидия на жидком свинцовом катоде. Из образовавшегося свинцово-рубидиевого сплава рубидий выделяют дистилляцией в вакууме.
В небольших количествах рубидий получают восстановлением хромата рубидия Rb2CrO4порошком циркония или кремния, а рубидий высокой чистоты – путем медленного термического разложения азида рубидия RbN3в вакууме при 390–395° С.
Металлический рубидий – компонент материала катодов для фотоэлементов и фотоэлектрических умножителей, хотя по чувствительности и диапазону действия рубидиевые фотокатоды уступают некоторым другим, в частности цезиевым. Он входит в состав смазочных композиций, используемых в реактивной и космической технике. Пары рубидия используют в разрядных электрических трубках.
Металлический рубидий является компонентом катализаторов (его наносят на активную окись алюминия, силикагель, металлургический шлак) доокисления органических примесей в ходе производства фталевого ангидрида, а также процесса получения циклогексана из бензола. В его присутствии реакция идет при более низких температурах и давлениях, чем при активации катализаторов натрием или калием, и ему почти не мешают «смертельные» для обычных катализаторов яды – вещества, содержащие серу.
Рубидий опасен в обращении. Хранят его в ампулах из специального стекла в атмосфере аргона или в стальных герметичных сосудах под слоем обезвоженного минерального масла.
Соединения рубидия. Рубидий образует соединения со всеми обычными анионами. Почти все соли рубидия хорошо растворимы в воде. Как и у калия мало растворимы соли Rb2SiF6, Rb2PtCl6.
Соединения рубидия с кислородом.
Рубидий образует многочисленные кислородные соединения, в том числе, оксид Rb2O, пероксид Rb2O2, надпероксид RbO2, озонид RbO3. Все они окрашены, например, Rb2O – ярко-желтый, а RbO2– темно-коричневый. Надпероксид рубидия образуется при сжигании рубидия на воздухе. Пероксид рубидия получают окислением рубидия, растворенного в безводном аммиаке, безводным пероксидом водорода, а оксид рубидия – нагреванием смеси металлического рубидия и его пероксида. Оксид, пероксид и надпероксид термически устойчивы, они плавятся при температуре около 500° С.
Методом рентгеноструктурного анализа было показано, что соединение состава Rb4O6, полученное в твердом состоянии реакцией Rb2O2с RbO2в соотношении 1:2, имеет состав [Rb4(O22– )(O2– )2]. При этом двухатомные анионы кислорода разных типов (пероксид и надпероксид) в кубической элементарной ячейке неразличимы даже при –60° С. Это соединение плавится при 461° С.
Озонид рубидия RbО3образуется при действии озона на безводный порошок RbОН при низкой температуре:
Частичное окисление рубидия при низких температурах дает соединение состава Rb6O, которое разлагается выше –7,3° С с образованием блестящих кристаллов медного цвета, имеющих состав Rb9O2. Под действием воды соединение Rb9O2воспламеняется. При 40,2° С оно плавится с разложением и образованием Rb2O и Rb в соотношении 2:5.
Карбонат рубидияRb2CO3плавится при 873° С, хорошо растворим в воде: при 20° С в 100г воды растворяется 450г карбоната рубидия.
В 1921 немецкие химики Франц Фишер (Fischer Franz) (1877–1947) и Ганс Тропш (Tropsch Hans) (1889–1935) нашли, что карбонат рубидия – превосходный компонент катализатора для получения синтетической нефти – синтола (смесь спиртов, альдегидов и кетонов, образующаяся из водяного газа при 410° C и давления 140–150 атм в присутствии специального катализатора).
Карбонат рубидия оказывает положительное действие на процесс полимеризации аминокислот, с его помощью получены синтетические полипептиды с молекулярной массой до 40 000, причем реакция протекает очень быстро.
Гидрид рубидияRbH получают взаимодействием простых веществ при нагревании под давлением 5–10 МПа в присутствии катализатора:
Это соединение плавится при 585° С; разлагается под действием воды.
Галогениды рубидияRbF, RbCl, RbBr, RbI получают при взаимодействии гидроксида или карбоната рубидия с соответствующими галогеноводородными кислотами, при реакции сульфата рубидия с растворимыми галогенидами бария, а также при пропускании сульфата или нитрата рубидия через ионообменную смолу.
Галогениды рубидия хорошо растворимы в воде, хуже – в органических растворителях. Они растворяются в водных растворах галогеноводородных кислот, образуя в растворе гидрогалогениды, устойчивость которых падает от гидродифторида RbHF2к гидродииодиду RbHI2.
Фторид рубидия входит в состав специальных стекол и композиций для аккумулирования тепла. Он является оптическим материалом, прозрачным в диапазоне 9–16 мкм. Хлорид рубидия служит электролитом в топливных элементах. Его добавляют в специальные чугунные отливки для улучшения их механических свойств, он является компонентом материала катодов электроннолучевых трубок.
У смесей хлоридов рубидия с хлоридами меди, серебра или лития электрическое сопротивление падает с повышением температуры столь резко, что они могут стать весьма удобными термисторами в различных электрических установках, работающих при температуре 150–290° C.
Иодид рубидия используется как компонент люминесцентных материалов для флуоресцирующих экранов, твердых электролитов в химических источниках тока. Соединение RbAg4I5имеет самую высокую электропроводность из всех известных ионных кристаллов. Его можно использовать в тонкопленочных батареях.
Комплексные соединения. Для рубидия не характерно образование ковалентных связей. Наиболее устойчивыми являются его комплексы с полидентатными лигандами, например с краун-эфирами, где он обычно проявляет координационное число 6.
Другая группа очень эффективных лигандов, которые в последнее время используются для координации катионов щелочных элементов, – макроциклические полидентатные лиганды, которые французский химик-органик Жан Мари Лен назвал криптандами (рис. 1).
Рубидий образует комплекс [Rb(crypt)]CNS . H2O, в котором криптанд N<(CH2CH2O)2CH2CH2>3N (crypt) заключает катион в координационной полиэдр, имеющий форму двухшапочной тригональной призмы (рис. 2).
Озонид рубидия образует устойчивые растворы в органических растворителях (таких как CH2Cl2, тетрагидрофуран или СН3CN), если катион координирован краун-эфирами или криптандами. Медленное выпаривание аммиачных растворов таких комплексов приводит к образованию красных кристаллов. Рентгеноструктурный анализ соединения состава [Rb(18-crown-6)(O3)(NH3)] показал, что координационное число атома рубидия равно 9. Он образует шесть связей с краун-эфиром, две – с ионом O3– и одну – с молекулой аммиака.
Применение изотопов рубидия.
Рубидий-87 самопроизвольно испускает электроны ( b -излучение) и превращается в изотоп стронция. Около 1% стронция образовалось на Земле именно этим путем, и если определить соотношение изотопов стронция и рубидия с массовым числом 87 в какой-либо горной породе, то можно с большой точностью вычислить ее возраст. Такой метод пригоден применительно к наиболее древним породам и минералам. С его помощью установлено, например, что самые старые скальные породы американского континента возникли 2100 млн лет тому назад.
Радионуклид рубидия-82 с периодом полураспада 76 с используется в диагностике. С его помощью, в частности, оценивают состояние миокарда. Изотоп вводится в кровеносную систему пациента, и кровоток анализируется методом позитронно-эмиссионной томографии (ПЭТ).
Елена Савинкина
Также по теме:
Литература:
Популярная библиотека химических элементов. М., Наука, 1977
Greenwood N.N., Earnshaw A. Chemistry of the Elements, Oxford: Butterworth, 1997
Источник: www.krugosvet.ru