Наночастицы серебра в водных растворах получают путем восстановления ионов серебра с помощью глюкозы, аскорбиновой кислоты, гидразина, боргидрида натрия и других восстановителей. Реакцию восстановления проводят в различных условиях. Восстановление глюкозой проводят при нагревании до 60 0 С. Для увеличения скорости протекания реакции используют гидроксид натрия. Полученные частицы исследуют различными способами: методом рентгеновской дифракции (XRD), методом трансмиссионной электронной микроскопии (TEM), а также проводились исследования на спектрофотометре. Исследования показали, что в ходе восстановления в водных растворах были получены частицы размером 10 – 20нм, λ = 1.5418 A°
К способам управления размерами наночастиц, применяемым в научной практике, относятся: использование полимерных матриц, позволяющих управлять размерами нанокластеров, полимерной защиты; физические методы управления размерами (обработка ультразвуком, облучение рентгеновским излучением и использование токов высокой чистоты). Изменение размера нанокластеров металлов добиваются также варьированием природы восстановителя [3].
Серебро, наночастицы в изделиях как бактерицид — прорыв в науке или жесткий маркетинговый развод
Так, использование боргидрида натрия при восстановлении позволяет в большинстве случаев получить наночастицы серебра с узким распределением по размерам в пределах 2-8 нм. Восстановление более мягким восстановителем, таким как гидразин, приводит к образованию более крупных наночастиц металлов с размерами 15-30 нм.
При варьировании условий восстановления возможно получение практически монодисперсных наночастиц. Строение и размер продукта в большой степени зависит от условий реакции таких как температура и концентрация нитрата серебра. Например, когда температура понижается до 120 или увеличивается до 190, в полученном продукте доминируют наночастицы с нерегулярной структурой (формой). Начальная концентрация нитрата серебра должна быть не больше 0.1М, в противном случае будет выпадать в виде осадка металлическое серебро. Наночастицы серебра с различными размерами могут быть получены в результате увеличения времени проведения реакции.
Для исследования влияния рН на устойчивость водных коллоидных растворов, раствор нитрата серебра был предварительно обработан и его значение рН установлено по растворам NaOH и HCl. Процесс восстановления серебра шел замедленно в сильнокислых (рН 1.5) и в основных (рН 12.5) условиях. Коллоидный раствор в щелочной среде сохраняет устойчивость в течении больше, чем 2 недели без образования осадка. В то время как в кислотных условиях подобная стабильность не наблюдается, образовавшиеся агригаты сохраняются лишь в течении 5 дней при рН 1.5.
Также известны способы получения наночастиц серебра в неводных средах. Наночастицы серебра с фиксированным размером были синтезированы с помощью модифицированного высокомолекулярного процесса, который предполагает восстановление нитрата серебра с этиленгликолем в присутствии стабилизаторов, таких как поливинилпирролидон [4]. Несмотря на то, что принцип селективности для этих систем еще не полностью изучен, предполагают, что селективная адсорбция ПВП на различных кристаллографических плоскостях серебра определяет морфологию продукта.
Получение наночастиц серебра боргидридным методом
Оптические измерения коллоидных наночастиц серебра в этаноле показывают единственный максимум при длине волны 395нм, который связан с поверхностным плазмонным резонансом. Это и соответствует сферическим наночастицам серебра размером 5-8нм. Наблюдался процесс разрушения наночастицы при прохождении через энергетический барьер: должно накопиться необходимое для разрушения наночастицы количество энергии и, одновременно, проникнуть в запрещенную энергетическую зону и индуцировать многофотонный процесс.
1.2.1.1 Получение наночастиц серебра методом фотолиза
Процесс фотолиза, с помощью лазерного возбуждения, также может быть использован для получения наночастиц серебра в коллоидных растворах. Камат [5] в своей работе предполагал, что в процессе фотолиза наночастицы серебра теряют электроны за счет фотоэжекции, образуя переходное состояние, которое предшествует окончательному разделению больших частиц.
Таками [5] считал, что уменьшение размера частиц наблюдается после облучения нановторичными Nd:YAG лазерными импульсами. Это объясняется частичным нагревом, плавлением и испарением поверхностного слоя. Моханти [5] предполагал, что лазерное облучение разбивает наночастицы серебра на мельчайшие фрагменты, которые снова образуют частицы новых размеров. Таким образом, основным способом контроля размера образующихся наночастиц является облучение.
1.2.1.2 Получение наночастиц серебра с помощью лазерного излучения
В последние несколько лет для получения коллоидных частиц металлов использовалось лазерное облучение. Для элементов, в первых работах Мафуна [5], было показано, что получение наночастиц с помощью лазера, может быть выполнено в растворах, эта возможность используется металлическими коллоидными частицами, без учета ионов в конце процесса образования наночастиц. Изучается возможность расширения этого процесса для большего числа различных растворителей отличных от воды, что было представлено в работах Амондола [6], который предложил способ контролирования металлических кластерных соединений за счет переизлучения, мониторинга результатов с помощью исследования оптических свойств. Совсем недавно исследовалось прямое влияние лазерного излечения на золото-серебряную коллоидную смесь, что дало новые способы получения сплавов наночастиц.
Контроль размера, формы и структуры металлических наночастиц технологически важны из-за сильных корреляций между этими параметрами и оптическими, электрическими и кристаллическими свойствами.
Источник: kazedu.com
1.2 Основные методы получения наночастиц серебра
1.2.1. Получение наночастиц серебра методом химического восстановления в растворах
Наночастицы серебра в водных растворах получают путем восстановления ионов серебра с помощью глюкозы, аскорбиновой кислоты, гидразина, боргидрида натрия и других восстановителей. Реакцию восстановления проводят в различных условиях. Восстановление глюкозой проводят при нагревании до 60 0 С. Для увеличения скорости протекания реакции используют гидроксид натрия. Полученные частицы исследуют различными способами: методом рентгеновской дифракции (XRD), методом трансмиссионной электронной микроскопии (TEM), а также проводились исследования на спектрофотометре. Исследования показали, что в ходе восстановления в водных растворах были получены частицы размером 10 – 20нм, λ = 1.5418 A°
К способам управления размерами наночастиц, применяемым в научной практике, относятся: использование полимерных матриц, позволяющих управлять размерами нанокластеров, полимерной защиты; физические методы управления размерами (обработка ультразвуком, облучение рентгеновским излучением и использование токов высокой чистоты). Изменение размера нанокластеров металлов добиваются также варьированием природы восстановителя [Кузьмина Л.Н.
Получение наночастиц серебра методом химического восстановления/Л.Н.Кузьмина, Н.С.Звиденцова, Л.В Колесников// Журнал Российского химического общества им. Д.И. Менделеева. – 2007. — Т. XХХ, № 8. – С.7 -12].
Так, использование боргидрида натрия при восстановлении позволяет в большинстве случаев получить наночастицы серебра с узким распределением по размерам в пределах 2-8 нм. Восстановление более мягким восстановителем, таким как гидразин, приводит к образованию более крупных наночастиц металлов с размерами 15-30 нм.
При варьировании условий восстановления возможно получение практически монодисперсных наночастиц. Строение и размер продукта в большой степени зависит от условий реакции таких как температура и концентрация нитрата серебра. Например, когда температура понижается до 120 или увеличивается до 190, в полученном продукте доминируют наночастицы с нерегулярной структурой (формой). Начальная концентрация нитрата серебра должна быть не больше 0.1М, в противном случае будет выпадать в виде осадка металлическое серебро. Наночастицы серебра с различными размерами могут быть получены в результате увеличения времени проведения реакции.
Также известны способы получения наночастиц серебра в неводных средах. Наночастицы серебра с фиксированным размером были синтезированы с помощью модифицированного высокомолекулярного процесса, который предполагает восстановление нитрата серебра с этиленгликолем в присутствии стабилизаторов, таких как поливинилпирролидон [Сергеев Б.М.. Получение наночастиц серебра в водных растворах полиакриловой кислоты/ Б.М.Сергеев, М..В. Кирюхин, А.Н.Прусов, В.Г Сергеев // Вестник Московского Университета. Серия 2. Химия – 1999. – Т.40, №2. – С. 129-133.].
1.2. 2.»Зеленый синтез»: получение наночастиц с использованием растений
Растения способны восстанавливать ионы металлов как на своей поверхности, так и в различных органах и тканях, удаленных от места проникновения ионов. В связи с этим растения используются для извлечения ценных металлов. Подобный процесс в настоящее время называется фитодобычей.
Накопленные металлы можно извлекать из убранных растений с использованием агломерационного и плавильного методов. Исследование процесса биоакумуляции металлов в растениях показало, что металлы, как правило, накапливаются в виде наночастиц. Например, растения Brassica juncea (листовая горчица) и Meticago sativa (люцерна посевная) накапливали наночастицы серебра размером 50 нм в количестве до 13.6% от собственного веса при выращивании на нитрате серебра в качестве субстрата [Harris et al., 2008]. Икосаэдры золота размером 4 нм выявлялись в M. Sativa [Gardea – Torresdey et al., 2002], полусферические формы частиц меди размером 2 нм – в Iris pseudocorus (ирис всевдоаировый) [Manceau et al., 2008], выращенных на субстратах, содержащих соли соответствующих металлов [Harris et al., 2008].
В целом механизм синтеза металлических наночастиц в растениях и в растительных экстрактах включает три основные фазы: 1) фазу активации, в процессе которой происходит восстановление ионов металла; 2) фазу роста, в течение которой происходит спонтанное включение мелких соединений наночастиц в наночастицы большего размера (формирование наночастиц за счет гетерогенной нуклеации и роста), что сопровождается увеличением термодинамической стабильности наночастиц, и 3) фазу терминации процесса, определяющую окончательную форму наночастиц [Si S et al., 2007].
Процесс образования наночастиц схематически изображен на рисунке 1.Рис. 1. Схема синтеза металлических наночастиц в растительном экстракте. Ионы металла связываются с восстаналивающими метаболитами и стабилизирующими агентами, восстаналиваясь до атомов металлов. Полученных комплекс атома металла с метаболитом взаимодействует с другими комплексами, формируя метаболлическую наночастицу, затем происходит рост и слияние отдельных мелких наночастиц в более крупные за счет процесса переконденсации до тех пор, пока частицы не обретут нужный размер и форму, стабильные в данных условиях.
При увеличении длительности фазы роста наночастицы агрегируют между собой, образуя нанотрубки, нанопризмы, наношестиугольники, а так же множество других наночастиц нерегулярной формы [Kim et al., 2010].
В настоящее время для синтеза металлических наночастиц используют различные физические и химические процессы, позволяющие получать наночастицы с заданными свойствами. Однако, несмотря на широкое распространение, это, как правило, дорогостоящие, трудоемкие способы, сопряженные с риском и потенциальной опасностью для окружающей среды и живых организмов. Таким образом, существует очевидная потребность в альтернативных экономически эффективных и в то же время экологически чистых методах производства наночастиц [Sharma et al., 2009].
При получении наночастиц необходимо учитывать их неустойчивость и высокую реакционную способность, которые могут привести к агрегации наночастиц, потере необходимых свойств при взаимодействии с окружающей средой, изменить структуру наночастиц. Это может нарушить эволюционный переход к наноматериалу и в конечном итоге определить низкий уровень качества эксплуатационных характеристик [Минько с соавт., 2013].
Источник: studfile.net
способ получения наночастиц серебра
Изобретение может быть использовано в области химии, медицины и нанотехнологии. Способ получения наночастиц серебра включает приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125÷0,04 М/л.
Полученные растворы смешивают при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00 и выдерживают при температуре 15÷55°C в течение 0,34÷48 часов в защищенном от света месте с получением раствора супрамолекулярного полимера. Полученный раствор супрамолекулярного полимера разбавляют водой в объемном соотношении 1:1. Готовят водный раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавляют в раствор супрамолекулярного полимера при постоянном перемешивании. Изобретение позволяет получить наночастицы серебра со средним гидродинамическим радиусом 20 нм. 4 ил., 1 пр.
Формула изобретения
Способ получения наночастиц серебра, содержащий приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125÷0,04 М/л, смешивание полученных растворов при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00, выстаивание смеси при температуре 15÷55°C в течение 0,34÷48,00 часов в защищенном от света месте с получением раствора супрамолекулярного полимера, разбавление смеси водой в объемном соотношении 1:1, приготовление водного раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавление водного раствора борогидрида натрия в раствор сумолекулярного полимера при постоянном перемешивании.
Описание изобретения к патенту
Изобретение относится к области получения наноразмерных структур из серебра, полученных в результате химического восстановления борогидридом натрия ионов серебра, включенных в супрамолекулярный полимер. Способ позволяет получать стабильные наночастицы серебра со специфическими свойствами, используя только биосовместимые реагенты. Наночастицы серебра могут быть применены в разработке антибактериальных материалов и нанотехнологиях.
Способ получения наночастиц серебра (НЧС) на основе супрамолекулярного полимера открывает широкие возможности управления их свойствами. Супрамолекулярные полимеры — это полимероподобные макромолекулярные структуры, полученные в результате ассоциации ионов, удерживаемых вместе межмолекулярными силами.
Технический результат настоящего изобретения заключается в получении наночастиц серебра со средним гидродинамическим радиусом 20 нм.
Технический результат достигается в два этапа.
Первый этап — смешение водного раствора нитрата серебра с концентрацией его в исходной смеси от 0,001М до 0,02М с водным раствором L-цистеина, таким образом, чтобы мольное соотношение серебра и L-цистеина находилось в диапазоне 1,25÷2,00. При этом образуется мутный раствор, который оставляют созревать в защищенном от света месте при температуре от 15 до 55°C до визуальной прозрачности. Созревание происходит в течение от 20 минут до двух суток (от 0,35 часа до 48,00 часов), в зависимости от концентрации исходных компонентов, их мольного соотношения и температуры. В результате получают прозрачный вязкий раствор супрамолекулярного геля светло-желтого цвета. Методика его синтеза соответствует патенту РФ № 2423384 от 10.07.2011.
В ультрафиолетовом спектре полученного раствора наблюдается появление двух слабых полос поглощения: в области 305 нм и 389 нм (Фиг.1).
Относительная вязкость полученного раствора находится в пределах от 1,1 до 2,5, в зависимости от концентрации исходных компонентов, их мольного соотношения и времени созревания раствора. Установлено, что для достижения результата необходим только L-цистеин высокой степени чистоты (не менее 99%).
Второй этап предполагает смешение водного раствора супрамолекулярного полимера на основе нитрата серебра и L-цистеина с водным раствором борогидрида натрия при постоянном перемешивании. Мольное соотношение серебра и борогидрида натрия должно составлять 0,4. При этом образуется красно-коричневый раствор с низкой вязкостью.
В ультрафиолетовом спектре полученного раствора имеются полосы поглощения в диапазоне от 390 до 500 нм, соответствующие явлению плазмонного резонанса на металлических наночастицах серебра или их агрегатах (Фиг.2).
Исследованием уровня техники установлено, что способов получения наночастиц серебра химическим восстановлением борогидридом натрия из водного раствора супрамолекулярного полимера на основе нитрата серебра и L-цистеина не обнаруживается.
Сущность изобретения заключается в следующем.
Водный раствор супрамолекулярного полимера (L-цистеин серебряный раствор) на основе L-цистеина и нитрата серебра представляет собой раствор полимероподобного супрамолекулярного соединения, построенного из молекул меркаптида серебра и ионов серебра, с формированием линейных цепочек со связями серебро-сера: -Ag-S-Ag-S-Ag-S-.
Авторами впервые было установлено, что указанный раствор может использоваться как исходный реагент для синтеза седиментационно и частично агрегативно устойчивых наночастиц серебра со специфическими свойствами. Ионы серебра, включенные в супрамолекулярный полимер, восстанавливаются борогидридом натрия до металлического серебра.
Размер синтезируемых наночастиц серебра детерминируется размером супрамолекул, их концентрацией, температурой проведения процесса и другими факторами. Молекулы цистеина, входившие в состав супрамолекулярного полимера, связываются с поверхностью получаемых наночастиц по тиольной группе. Тем самым наночастицам придается седиментационная и частично-агрегативная устойчивость. Срок хранения растворов наночастиц, полученных данным способом, без значительного изменения их свойств, — около 6 месяцев.
Образование фракций наночастиц размером от 10 до 50 нм в растворе установлено методом динамического светорассеяния. Измерение интенсивности ДСР выполнено на анализаторе Zetasizer ZS (Malvern Instruments Ltd., Великобритания) с He-Ne — лазером ( =633 нм) мощностью 4 мВт. Все измерения осуществлялись при 25°C. На Фиг.3 представлены данные динамического светорассеяния, которые свидетельствуют о наличии в данном растворе наночастиц со средним гидродинамическим радиусом порядка 20 нм. Фракция наночастиц с большим размером представлена обратимыми агрегатами из первой фракции.
Методом просвечивающей электронной микроскопии установлено присутствие в растворе наночастиц размером от 10 до 50 нм, рефлексы которых на электронограмме образца соответствуют присутствию металлического серебра.
На Фиг.4 представлены электронно-микроскопический снимок и электронограмма высушенного на подложке из формвара образца раствора наночастиц серебра, полученные на просвечивающем электронном микроскопе «LEO 912 АВ OMEGA» (Carl Zeiss, Германия).
В предложенном способе получения наночастиц используется биологически активное супрамолекулярное соединение на основе биосовместимой аминокислоты L-цистеина и нитрата серебра. Наночастицы серебра являются стабильным биологически активным продуктом, совместимым с полимерами медицинского назначения.
Изобретение поясняется графическими материалами (Фиг.1÷4).
Фиг.1. УФ спектры L-цистеин-серебряного раствора при разном его разбавлении: 1 — без разбавления, 2 — разбавление в 2 раза, 3 — разбавление в 8 раз (концентрации компонентов в неразбавленном растворе: C AgNO3 =0,0038М, C cys =0,0030М; толщина слоя 1 см).
Фиг.2. УФ спектры растворов наночастиц серебра, полученных при разном разбавлении исходного ЦСР: 1 — без разбавления, 2 — разбавление в 2 раза, 3 — разбавление в 8 раз (концентрации компонентов в неразбавленном растворе: C AgNO3 = 0,0038М, C cys =0,0030М; толщина слоя 1 мм).
Фиг.3. Распределение НЧС по размерам в образце, полученном при разбавлении исходного раствора супрамолекулярного полимера в 8 раз (концентрации компонентов в неразбавленном растворе: C AgNO3 =0,0038М, C cys =0,0030М).
Фиг.4. ПЭМ-изображение (а) и электронограмма (б) образца наночастиц полученного при разбавлении исходного раствора супрамолекулярного полимера в 2 раза (концентрации компонентов в неразбавленном растворе: C AgNO3 =0,0038M, C cys =0, 0030М).
Пример получения наночастиц серебра:
1. Растворяют 127,5 мг нитрата серебра в 25 мл дистиллированной воды.
2. Растворяют 90,8 мг L-цистеина в 25 мл дистиллированной воды.
3. К 25 мл раствора нитрата серебра приливают 155 мл дистиллированной воды и 20 мл раствора L-цистеина, смесь энергично перемешивают. Смесь оставляют созревать в защищенном от света месте на 10 часов при комнатной температуре.
4. К 50 мл полученного раствора приливают 50 мл дистиллированной воды и смесь энергично перемешивают. Получают разбавленный раствор супрамолекулярного полимера.
5. Растворяют 37,0 мг борогидрида натрия в 10 мл дистиллированной воды
6. К 100 мл разбавленного раствора супрамолекулярного полимера при перемешивании приливают по каплям (со скоростью 1 капля в секунду) 10 мл раствора борогидрида натрия. Перемешивание продолжают до прекращения заметного выделения пузырьков газа.
Таким образом заявляется способ получения наночастиц серебра, включающий приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125-10,04 М/л, смешивание полученных растворов при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00, выстаивание смеси при температуре 15÷55°C в течение 0,34÷48,00 часов в защищенном от света месте с получением раствора супрамолекулярного полимера, разбавление смеси водой в объемном соотношении 1:1, приготовление водного раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавление водного раствора борогидрида натрия в раствор сумолекулярного полимера при постоянном перемешивании.
Использование предлагаемого способа получения наночастиц серебра в областях, отличных от медицины, дает возможность стабилизировать коллоидные растворы металлического серебра с определенным, заранее заданным размером дисперсной фазы. Хотя непосредственный способ применения наночастиц серебра в таких областях не является объектом данного патентования, стоит отметить, что это могут быть такие приложения, как электронные и оптоэлектронные приборы и устройства, композитные материалы различного назначения, электропроводящие клеи, пленки.
Использование наночастиц серебра в качестве гетерогенных катализаторов применяется во многих процессах органического синтеза (например, в производстве формальдегида). При этом размер частиц определяет эффективность катализа: чем больше поверхность катализатора, тем активнее протекает каталитический процесс. Использование заявляемого способа получения наночастиц серебра позволит получать катализаторы двумя способами: получение наночастиц in situ (непосредственно в матрице носителя) и пропитка носителя коллоидным раствором наночастиц.
Источник: www.freepatent.ru