Установите соответствие между формулой соли и типом гидролиза её водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
A | Б | В | Г |
Eсли растворимая соль образована сильной кислотой и слабым основанием, то она гидролизуется по катиону (части слабого основания). Например,
В результате раствор имеет кислую среду (избыток ионов водорода).
Eсли растворимая соль образована слабой кислотой и сильным основанием, то она гидролизуется по аниону (части слабой кислоты). Например,
В результате раствор имеет щелочную среду (избыток гидроксид-ионов).
Соль, образованная сильной кислотой и сильным основанием, не гидролизуется, среда нейтральная.
А как считаете вы? Приглашаю к обсуждению #учимхимию
Растворимая соль, образованная слабой кислотой и слабым основанием, гидролизуется и по катиону, и по аниону.
Нерастворимые соли гидролизу не подвергаются.
А) Карбонат кальция — нерастворимая соль — реакция среды — гидролиза нет (3).
Б) Нитрат серебра — не гидролизуется (3).
В) Хлорид аммония — образован сильной кислотой и слабым основанием — гидролиз по катиону (1).
Г) Хлорид натрия — образован сильной кислотой и сильным основанием — гидролиза нет (3).
Примечание: нитрат серебра не подвергается гидролизу, можно считать это «исключением из правил», этот факт нужно запомнить.
Гидролиз нитрата серебра (I)
AgNO3 — соль образованная слабым основанием и сильной кислотой, поэтому реакция гидролиза протекает по катиону.
Молекулярное уравнение
AgNO3 + HOH ⇄ AgOH + HNO3
Полное ионное уравнение
Ag + + NO3 — + HOH ⇄ AgOH + H + + NO3 —
Сокращенное (краткое) ионное уравнение
Ag + + HOH ⇄ AgOH + H +
Среда и pH раствора нитрата серебра (I)
В результате гидролиза образовались ионы водорода (H + ), поэтому раствор имеет кислую среду (pH
Пособие-репетитор по химии
ЗАНЯТИЕ 7
10-й класс (первый год обучения)
Продолжение. Начало см. в № 22,/2005; 1, 2, 3, 5, 6/2006
План
1. Определение и сущность гидролиза.
2. Гидролиз солей различных типов.
3. Обратимый и необратимый гидролиз.
Слово «гидролиз» (от греч. – вода и – разложение) переводится как разложение водой.
Гидролизом соли называют взаимодействие ионов соли с водой, приводящее к образованию слабого электролита. Сущность процесса гидролиза сводится к химическому взаимодействию катионов или анионов соли с гидроксид-ионами или ионами водорода из молекул воды. В результате этого взаимодействия образуется слабый электролит.
Химическое равновесие процесса диссоциации воды смещается вправо, в сторону образования ионов. Поэтому в водном растворе соли появляется избыток свободных ионов Н + или ОН – , что и определяет среду раствора соли. При разбавлении раствора или при повышении температуры степень гидролиза увеличивается.
Неядерная реакция / Зеркало из чистого серебра. Химический эксперимент
Любую соль можно представить как продукт реакции нейтрализации. В зависимости от силы исходных кислоты и основания различают 4 типа солей. Гидролиз солей разных типов протекает по-разному и дает различную среду раствора.
Соль, образованная сильным основанием и слабой кислотой, подвергается гидролизу по анионному типу, среда раствора – щелочная (рН > 7), например:
СН3СООNa + HOH СН3СООH + NaOH,
В том случае, когда соль образована слабой многоосновной кислотой и сильным основанием, гидролиз по аниону протекает ступенчато и число ступеней гидролиза зависит от основности слабой кислоты. На первых ступенях гидролиза образуется кислая соль (вместо кислоты) и сильное основание, например:
Соль, образованная слабым основанием и сильной кислотой, подвергается гидролизу по катионному типу, среда раствора – кислая (рН + + HOH NH4OH + H + .
Если соль образована слабым многокислотным основанием и сильной кислотой, катионный гидролиз протекает cтупенчато в зависимости от кислотности слабого основания. Вместо основания на первых ступенях такого гидролиза образуется основная соль, например:
ZnCl2 + HOH Zn(OH)Cl + HCl,
Zn 2+ + HOH Zn(OH) + + H + ;
Zn(OH)Cl + HOH Zn(OH)2 + HCl,
Соль, образованная слабым основанием и слабой кислотой, гидролизуется одновременно и по катиону, и по аниону. Реакция растворов этих солей может быть нейтральной, слабокислой или слабощелочной, в зависимости от степени диссоциации продуктов гидролиза, например:
Соль, образованная сильным основанием и сильной кислотой, гидролизу не подвергается, т.к. в процессе реакции не образуется слабый электролит; среда раствора при этом нейтральная, например:
NaCl + HOH нет реакции.
Для большинства солей гидролиз является обратимым процессом, однако некоторые соли полностью разлагаются водой, т. е. для них гидролиз – необратимый процесс. Необратимому гидролизу подвергаются соли, образованные слабым нерастворимым или летучим основанием и слабой нерастворимой или летучей кислотой. Такие соли не могут существовать в водных растворах (Аl2S3, Fe2(СО3)3 и т.п.), например:
Из-за необратимого гидролиза в реакциях обмена между водными растворами двух солей не всегда образуются новые соли. В таких случаях необходимо учитывать реакции гидролиза исходных солей. Например, при взаимодействии водных растворов сульфида калия и хлорида алюминия сначала протекают обменные реакции исходных реагентов с водой, а потом – продуктов реакции между собой. Процесс описывается суммарным уравнением реакции:
Тест по теме «Гидролиз солей»
1. Водный раствор вещества А имеет нейтральную среду, а водный раствор вещества В – кислую среду. Растворы веществ А и В взаимодействуют между собой. Укажите эти вещества:
а) А – хлорид натрия, В – нитрат серебра;
б) А – нитрат бария, В – фосфорная кислота;
в) А – хлорид меди(II), В – уксусная кислота;
г) А – фторид натрия, В – хлорид бария.
2. Сумма коэффициентов в уравнении реакции между водными растворами нитрата хрома(III) и сульфида натрия равна:
а) 19; б) 12; в) 6; г) 22.
3. Газ выделяется при смешивании растворов хлорида хрома(III) и:
а) гидросульфида аммония;
б) гидроортофосфата калия;
в) гидросульфата натрия;
г) силиката натрия.
4. В четырех пробирках находятся водные растворы перечисленных ниже солей. Раствор какой соли можно отличить от других с помощью лакмуса?
а) бромид алюминия; б) сульфат цинка;
в) нитрат свинца; г) силикат калия.
5. Гидролиз протекает при растворении в воде:
а) бромида кальция; б) фосфата кальция;
в) нитрита кальция; г) ацетата кальция.
6. Гидролизу по аниону подвергается соль:
а) хлорид бария; б) нитрит калия;
в) хлорид аммония; г) фосфат натрия.
7. Цинк будет растворяться при погружении его в раствор:
а) хлорида натрия; б) хлорида бария;
в) хлорида алюминия; г) хлорида калия.
8. Пара веществ, в растворе которых фиолетовый лакмус изменяет окраску на красную и синюю, соответственно:
а) карбонат натрия и сульфит калия;
б) сульфат цинка и бромид алюминия;
в) хлорид никеля(II) и нитрит бария;
г) нитрат натрия и хлорид кальция.
9. Гидролиз невозможен для следующей группы соединений:
а) оксиды; б) нитриды;
в) фосфиды; г) гидриды.
10. Подавить гидролиз сульфата магния можно:
а) разбавлением раствора;
б) нагреванием раствора;
в) добавлением раствора серной кислоты;
г) добавлением раствора гидроксида натрия.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
а, б | г | а | г | в, г | б, г | в | в | а | в |
Задачи и упражнения по теме «Гидролиз солей»
1. Даны соли: хлорид калия, хлорид кобальта, карбонат натрия, сульфат цезия, сульфат железа(III), нитрат рубидия, ацетат натрия, нитрат магния, гидроксонитрат никеля, йодид бария. Заполните для них таблицу «Гидролиз солей».
Гидролиз солей
CoCl2, . | CoCl2, . | CoCl2 + H2O CoOHCl + HCl, |
. | . | Co 2+ + 2Cl – + H2O |
. | . | CoOH + + H + + 2Cl – , |
. | . | . |
Уравнения гидролиза солей с рН 3+ + H2O Fe(OH) 2+ + H + ;
2. Составьте молекулярные уравнения гидролиза солей на основании сокращенных ионных уравнений:
а) Cr 3+ + H2O = CrOH 2+ + H + ;
б) Fe 2+ + H2O = FeOH + + H + ;
в) Al 3+ + H2O = AlOH 2+ + H + ;
г) Сu 2+ + H2O = CuOH + + H + .
Молекулярные уравнения гидролиза:
3. Опишите процессы, происходящие при сливании водных растворов следующих солей:
а) нитрат хрома(III) и сульфид натрия;
б) хлорид алюминия и сульфид натрия;
в) сульфат железа(III) и карбонат натрия;
г) сульфат алюминия и сульфид аммония;
д) хлорид железа(III) и карбонат аммония.
Обмен и гидролиз одновременно:
4. При добавлении к водному раствору вещества А раздельно аммиака, сульфида натрия и нитрата серебра образуются белые осадки, причем два из них – одинакового состава. Определите вещество А.
5. При добавлении к водному раствору вещества А раздельно сульфида калия, аммиака и хлорида бария образуются осадки. В первом и втором случае – серо-зеленого цвета одного состава, в третьем случае – белый кристаллический. Определите вещество А.
Задачи
1. К 50 г раствора карбоната натрия с массовой долей растворенного вещества 10,6% прилили избыточное количество раствора сульфата алюминия. Какой газ выделяется при этом? Каков объем (н.у.) этого газа?
2. Вычислите относительную плотность по воздуху и по гелию газа, выделяющегося при гидролизе нитрида магния.
3. Вычислите относительную плотность по воздуху и по неону газа, выделяющегося при гидролизе фосфида кальция.
4. Гидроксид алюминия массой 11,7 г обработали раствором серной кислоты объемом 45 мл с молярной концентрацией 5 моль/л. Какая реакция среды будет у полученного раствора?
(Al(OH)3) = m/M = 11,7/78 = 0,15 моль,
(H2SO4) = с•V = 5•0,045 = 0,225 моль.
Мольные соотношения реагентов отвечают стехиометрическим коэффициентам: 0,15/2 = 0,225/3.
Однако среда раствора не нейтральная, а кислая, т.к. протекает гидролиз соли Al2(SO4)3:
Источник: al-shell.ru
Гидролиз нитрата серебра (I)
Нитрат серебра (I) – средняя соль, образованная слабым основанием – гидроксидом серебра (I) (AgOH) и сильной кислотой – азотной (HNO3). Формула — AgNO3.
Представляет собой бесцветные кристаллы ромбической формы. Молярная масса – 170 г/моль.
Рис. 1. Нитрат серебра (I). Внешний вид.
Гидролиз нитрата серебра (I)
Гидролизуется по катиону. Характер среды – кислый. Уравнение гидролиза имеет следующий вид:
AgNO3 ↔ Ag + + NO3 — (диссоциация соли);
Ag + +HOH ↔ AgOH+ H + (гидролиз по катиону);
Ag + + NO3 — + HOH ↔ AgOH + NO3 — + H + (ионное уравнение);
AgNO3+ H2O↔ AgOH + HNO3 (молекулярное уравнение).
Примеры решения задач
Задание | Рассчитайте массовые доли каждого из элементов, входящих в состав нитрата серебра (I). |
Решение | Массовая доля элемента рассчитывается следующим образом: |
т.е. отношение относительной атомной массы с учетом количества атомов, входящих в состав вещества, к молекулярной массе этого вещества, выраженное в процентах. Молекулярная масса нитрата серебра (I) равна 170.
Рассчитаем массовые доли элементов:
ω(Ag) = 1×108/170 ×100% =63,53%.
ω(N) = 1×14/170 ×100% =8,23%.
ω(O) = 3×16/170 ×100% =28,24%.
Чтоб проверить правильность расчета, путем складывания полученных массовых долей мы должны получить 100%:
ω(Ag) +ω(N) +ω(O) = 63,53 +8,23+28,24 = 100%.
Be 2+ + HOH↔ BeOH + + H +
Гидролизу не подвергается
Соль перхлорат калия (KClO4) гидролизу не подвергается, поскольку образована сильным основанием – гидроксидом калия и сильной кислотой – хлорной (4).
Соль сульфат бериллия (BeSO4) гидролизуется по катиону Be 2+ , поскольку образована слабым основанием – гидроксидом бериллия и сильной кислотой – серной (2).
Соль карбонат кальция (CaCO3) гидролизуется по аниону CO3 2- , поскольку образована слабой кислотой – угольной и сильным основанием – гидроксидом кальция (3).
Копирование материалов с сайта возможно только с разрешения
администрации портала и при наличие активной ссылки на источник.
Выберите язык:
- Онлайн калькуляторы
- Справочник
- Примеры решений
- Заказать решение
- Учебные статьи
- О проекте
- Задать вопрос
- Контакты
- Карта сайта
Нужна помощь с решением задач?
Более 500 авторов онлайн и готовы помочь тебе прямо сейчас! Цена от 20 рублей за задачу. Сейчас у нас проходит акция, мы дарим 100 руб на первый заказ.
Источник: ru.solverbook.com
Уравнение гидролиза солей нитрата серебра
AgNO3 — соль образованная слабым основанием и сильной кислотой, поэтому реакция гидролиза протекает по катиону.
Молекулярное уравнение
AgNO3 + HOH ⇄ AgOH + HNO3
Полное ионное уравнение
Ag + + NO3 — + HOH ⇄ AgOH + H + + NO3 —
Сокращенное (краткое) ионное уравнение
Ag + + HOH ⇄ AgOH + H +
Среда и pH раствора нитрата серебра (I)
В результате гидролиза образовались ионы водорода (H + ), поэтому раствор имеет кислую среду (pH
Уравнение гидролиза солей нитрата серебра
Установите соответствие между формулой соли и типом гидролиза её водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
A | Б | В | Г |
Eсли растворимая соль образована сильной кислотой и слабым основанием, то она гидролизуется по катиону (части слабого основания). Например,
В результате раствор имеет кислую среду (избыток ионов водорода).
Eсли растворимая соль образована слабой кислотой и сильным основанием, то она гидролизуется по аниону (части слабой кислоты). Например,
В результате раствор имеет щелочную среду (избыток гидроксид-ионов).
Соль, образованная сильной кислотой и сильным основанием, не гидролизуется, среда нейтральная.
Растворимая соль, образованная слабой кислотой и слабым основанием, гидролизуется и по катиону, и по аниону.
Нерастворимые соли гидролизу не подвергаются.
А) Карбонат кальция — нерастворимая соль — реакция среды — гидролиза нет (3).
Б) Нитрат серебра — не гидролизуется (3).
В) Хлорид аммония — образован сильной кислотой и слабым основанием — гидролиз по катиону (1).
Г) Хлорид натрия — образован сильной кислотой и сильным основанием — гидролиза нет (3).
Примечание: нитрат серебра не подвергается гидролизу, можно считать это «исключением из правил», этот факт нужно запомнить.
1.4.7. Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная.
Для того, чтобы понять, что такое гидролиз солей, вспомним для начала, как диссоциируют кислоты и щелочи.
Общим между всеми кислотами является то, что при их диссоциации обязательно образуются катионы водорода (Н + ), при диссоциации же всех щелочей всегда образуются гидроксид-ионы (ОН − ).
В связи с этим, если в растворе, по тем или иным причинам, больше ионов Н + говорят, что раствор имеет кислую реакцию среды, если ОН − — щелочную реакцию среды.
Если с кислотами и щелочами все понятно, то какая же реакция среды будет в растворах солей?
На первый взгляд, она всегда должна быть нейтральной. И правда же, откуда, например, в растворе сульфида натрия взяться избытку катионов водорода или гидроксид-ионов. Сам сульфид натрия при диссоциации не образует ионов ни одного, ни другого типа:
Тем не менее, если бы перед вами оказались, к примеру, водные растворы сульфида натрия, хлорида натрия, нитрата цинка и электронный pH-метр (цифровой прибор для определения кислотности среды) вы бы обнаружили необычное явление. Прибор показал бы вам, что рН раствора сульфида натрия больше 7, т.е. в нем явный избыток гидроксид-ионов. Среда раствора хлорида натрия оказалась бы нейтральной (pH = 7), а раствора Zn(NO3)2 кислой.
Единственное, что соответствует нашим ожиданиям – это среда раствора хлорида натрия. Она оказалась нейтральной, как и предполагалось.
Но откуда же взялся избыток гидроксид-ионов в растворе сульфида натрия, и катионов-водорода в растворе нитрата цинка?
Попробуем разобраться. Для этого нам нужно усвоить следующие теоретические моменты.
Любую соль можно представить как продукт взаимодействия кислоты и основания. Кислоты и основания делятся на сильные и слабые. Напомним, что сильными называют те кислоты, и основания, степень диссоциации, которых близка к 100%.
примечание: сернистую (H2SO3) и фосфорную (H3PO4) чаще относят к кислотам средней силы, но при рассмотрении заданий по гидролизу нужно относить их к слабым.
Кислотные остатки слабых кислот, способны обратимо взаимодействовать с молекулами воды, отрывая от них катионы водорода H + . Например, сульфид-ион, являясь кислотным остатком слабой сероводородной кислоты, взаимодействует с ней следующим образом:
S 2- + H2O ↔ HS − + OH −
Как можно видеть, в результате такого взаимодействия образуется избыток гидроксид-ионов, отвечающий за щелочную реакцию среды. То есть кислотные остатки слабых кислот увеличивают щелочность среды. В случае растворов солей содержащих такие кислотные остатки говорят, что для них наблюдается гидролиз по аниону.
Кислотные остатки сильных кислот, в отличие от слабых, с водой не взаимодействуют. То есть они не оказывают влияния на pH водного раствора. Например, хлорид-ион, являясь кислотным остатком сильной соляной кислоты, с водой не реагирует:
То есть, хлорид-ионы, не влияют на pН раствора.
Из катионов металлов, так же с водой способны взаимодействовать только те, которым соответствуют слабые основания. Например, катион Zn 2+ , которому соответствует слабое основание гидроксид цинка. В водных растворах солей цинка протекают процессы:
Zn 2+ + H2O ↔ Zn(OH) + + H +
Zn(OH) + + H2O ↔ Zn(OH) + + H +
Как можно видеть из уравнений выше, в результате взаимодействия катионов цинка с водой, в растворе накапливаются катионы водорода, повышающие кислотность среды, то есть понижающие pH. Если в состав соли, входят катионы, которым соответствуют слабые основания, в этом случае говорят что соль гидролизуется по катиону.
Катионы металлов, которым соответствуют сильные основания, с водой не взаимодействуют. Например, катиону Na + соответствует сильное основание – гидроксид натрия. Поэтому ионы натрия с водой не реагируют и никак не влияют на pH раствора.
Таким образом, исходя из вышесказанного соли можно разделить на 4 типа, а именно, образованные:
1) сильным основанием и сильной кислотой,
Такие соли не содержат ни кислотных остатков, ни катионов металлов, взаимодействующих с водой, т.е. способных повлиять на pH водного раствора. Растворы таких солей имеют нейтральную реакцию среды. Про такие соли говорят, что они не подвергаются гидролизу.
2) сильным основанием и слабой кислотой
В растворах таких солей, с водой реагируют только кислотные остатки. Среда водных растворов таких солей щелочная, в отношении солей такого типа говорят, что они гидролизуются по аниону
Примеры: NaF, K2CO3, Li2S и т.д.
3) слабым основанием и сильной кислотой
У таких солей с водой реагируют катионы, а кислотные остатки не реагируют – гидролиз соли по катиону, среда кислая.
4) слабым основанием и слабой кислотой.
С водой реагируют как катионы, так и анионы кислотных остатков. Гидролиз солей такого рода идет и по катиону, и по аниону. Нередко такие соли подвергаются необратимому гидролизу.
Что же значит то, что они необратимо гидролизуются?
Поскольку в данном случае с водой реагируют и катионы металла (или NH4 + ) и анионы кислотного остатка, в раcтворе одновременно возникают и ионы H + , и ионы OH − , которые образуют крайне малодиссоциирующее вещество – воду (H2O).
Это, в свою очередь, приводит к тому, что соли образованные кислотными остатками слабых оснований и слабых кислот не могут быть получены обменными реакциями, а только твердофазным синтезом, либо и вовсе не могут быть получены. Например, при смешении раствора нитрата алюминия с раствором сульфида натрия, вместо ожидаемой реакции:
Наблюдается следующая реакция:
Тем не менее, сульфид алюминия без проблем может быть получен сплавлением порошка алюминия с серой:
При внесении сульфида алюминия в воду, он также как и при попытке его получения в водном растворе, подвергается необратимому гидролизу.
Источник: all-equa.ru