Почему остальные металлы твердые?
У каждого металла есть своя кристаллическая решетка . Из-за атомов, которые постоянно находятся в процессе колебания, но далеко не отходят от своего места, решётка получается очень прочной. Этим обуславливается “твердость” металлов.
Все металлы, кроме ртути, находятся в твердом состоянии при нормальных условиях. Но что будет с металлом, если его нагреть до определенной температуры? Сначала он становится мягче, потом более тягучим, а затем и вовсе переходит в жидкое состояние, подобно воде. Все дело в температуре плавления и для каждого материала она своя.
Внутренняя структура металла определяет при какой температуре тот или иной металл начнет плавиться. На это влияет связь молекул или атомов и расстояние, на котором они находятся друг от друга.
Ртуть — жидкий металл
Следовательно, у ртути молекулы располагаются также, как и у воды? Поэтому она жидкая? Не совсем. Ртуть также имеет прочную кристаллическую решетку, все дело в температуре.
Почему ртуть жидкая?
У каждого металла своя температура плавления. У Ртути она равна -38,8 градусам по Цельсию. Значит ли это, что она может быть в твердом состоянии? Однозначно да.
При -39 ртуть кристаллизуется и становится твердой. Поскольку при нормальных условиях температура выше температуры плавления, соответственно, металл плавится.
Если бы температура при нормальных условиях у человека была -40 градусов, то нам бы пришлось нагревать ртуть, чтобы сделать её жидкой. Поэтому она является жидким металлом, а не чем-то другим.
Ртуть может быть не только в жидком состоянии, но и газообразном, поскольку при комнатной температуре происходит её нагрев и она начинает испаряться. Пары ртути очень вредны для организма человека, поэтому с этим металлом нужно обращаться очень осторожно.
В домашних условиях вы можете встретить ртуть в чистом виде только в градусниках. Не забывайте, что обязательно нужно вызывать специальную службу, если вы его разобьете.
Существуют ли еще жидкие металлы?
Ртуть единственный металл, который при нормальных условиях имеет жидкую форму. Дело в температуре плавления. Существуют также металлы, которые становятся жидкими при температуре тела человека.
Например, температура плавления Галлия составляет 29,8 градуса. Это значит, что в наших ладонях он станет таким же жидким как ртуть. Также, существует металл Цезий, который плавится при 28,5 градусах, но лучше в руки его не брать, поскольку он является щелочным металлом. Нельзя не упомянуть Франций, который “растает” в руках при 26,5 градусах.
Источник: dzen.ru
Ртуть
Ртуть — Самый ПОДВИЖНЫЙ Металл на Земле!
- Свойства ртути
- Амальгамы
- Ртутный пар
- Соединения ртути
- Применение ртути
- История ртути
Вряд ли нужно доказывать, что ртуть — металл своеобразный. Это очевидно хотя бы потому, что ртуть — единственный металл, находящийся в жидком состоянии в условиях, которые мы называем нормальными. Почему ртуть жидкая — вопрос особый.
Но именно это свойство, вернее сочетание свойств металла и жидкости (самой тяжелой жидкости!), определило особое положение элемента № 80 в нашей жизни. О ртути можно рассказывать много: жидкому металлу посвящены десятки книг. Этот же рассказ — в основном о многообразии применения ртути и ее соединений.
Причастность ртути к славному клану металлов долгое время была под сомнением. Даже Ломоносов колебался, можно ли считать ртуть металлом, несмотря на то, что и в жидком состоянии она обладает почти полным комплексом металлических свойств: тепло- и электропроводностью, металлическим блеском и так далее. При охлаждении ртути до — 39°С становится совсем очевидным, что она — одно из «светлых тел, которые ковать можно».
Свойства ртути
Ртуть оказала науке огромные услуги. Как знать, насколько задержался бы прогресс техники и естественных наук без измерительных приборов — термометров, манометров, барометров и других, действие которых основано на необыкновенных свойствах ртути. Какие это свойства?
- Во-первых, ртуть — жидкость.
- Во-вторых, тяжелая жидкость — в 13,6 раза тяжелее воды.
- В-третьих, у нее довольно большой коэффициент температурного расширения — всего в полтора раза меньше, чем у воды, и на порядок, а то и два больше, чем у обычных металлов.
Есть и «в-четвертых», «в-пятых», «в-двадцатых», но вряд ли нужно перечислять все.
Еще любопытная деталь: «миллиметр ртутного столба» — не единственная физическая единица, связанная с элементом № 80. Одно из определений ома, единицы электрического сопротивления, — это сопротивление столбика ртути длиной 106,3 см и сечением 1 мм 2 .
Все это имеет отношение не только к чистой науке. Термометры, манометры и другие приборы, «начиненные» ртутью, давно стали принадлежностью не только лабораторий, но и заводов. А ртутные лампы, ртутные выпрямители! Все то же уникальное сочетание свойств открыло ртути доступ в самые разные отрасли техники, в том числе в радиоэлектронику, в автоматику.
Ртутные выпрямители, например, долгое время были наиболее важным и мощным, наиболее широко применяемым в промышленности типом выпрямителей электрического тока. До сих пор их используют во многих электрохимических производствах и на транспорте с электрической тягой, хотя в последние годы их постепенно вытесняют более экономичные и безвредные полупроводниковые выпрямители.
Современная боевая техника тоже использует замечательные свойства жидкого металла.
К примеру, одна из главных деталей взрывателя для зенитного снаряда — это пористое кольцо из железа или никеля. Поры заполнены ртутью. Выстрел — снаряд двинулся, он приобретает все большую скорость, все быстрее вращается вокруг своей оси, и тяжелая ртуть выступает из пор. Она замыкает электрическую цепь — взрыв.
Нередко с нею можно встретиться и там, где меньше всего ожидаешь. Иногда ею легируют другие металлы. Небольшие добавки элемента № 80 увеличивают твердость сплава свинца со щелочноземельными металлами. Даже при паянии бывает подчас нужна ртуть: припой из 93% свинца, 3% олова и 4% ртути — лучший материал для пайки оцинкованных труб.
Амальгамы ртути
Еще одно замечательное свойство ртути: способность растворять другие металлы, образуя твердые или жидкие растворы — амальгамы. Некоторые из них, например амальгамы серебра и кадмия, химически инертны и тверды при температуре человеческого тела, но легко размягчаются при нагревании. Из них делают зубные пломбы.
Амальгаму таллия, затвердевающую только при —60°С, применяют в специальных конструкциях низкотемпературных термометров.
Старинные зеркала были покрыты не тонким слоем серебра, как это делается сейчас, а амальгамой, в состав которой входило 70% олова и 30% ртути. В прошлом амальгамация была важнейшим технологическим процессом при извлечении золота из руд. В XX столетии она не выдержала конкуренции и уступила более совершенному процессу — цианированию. Однако старый процесс находит применение и сейчас, главным образом при извлечении золота, топко вкрапленного в руду.
Некоторые металлы, в частности железо, кобальт, никель, практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы.) Кроме железа и его аналогов, не амальгамируются тантал, кремний, рений, вольфрам, ванадий, бериллий, титан, марганец и молибден, то есть почти все металлы, применяемые для легирования стали. Это значит, что и легированной стали ртуть нестрашна.
Зато натрий, например, амальгамируется очень легко. Амальгама натрия легко разлагается водой. Эти два обстоятельства сыграли и продолжают играть очень важную роль в хлорной промышленности.
При выработке хлора и едкого натра методом электролиза поваренной соли используют катоды из металлической ртути. Для получения тонны едкого натра нужно от 125 до 400 г элемента № 80. Сегодня хлорная промышленность — один из самых массовых потребителей металлической ртути.
- ПЕРВЫЙ СВЕРХПРОВОДНИК. Спустя почти полтора столетия после опытов Пристли и Лавуазье Hg оказалась сопричастна еще к одному выдающемуся открытию, на этот раз в области физики. В 1911 г. голландский ученый Гейке Камерлинг-Оннес исследовал электропроводность ртути при низкой температуре. С каждым опытом он уменьшал температуру, и когда она достигла 4,12 К, сопротивление ртути, до этого последовательно уменьшавшееся, вдруг исчезло совсем: электрический ток проходил по ртутному кольцу, не затухая. Так было открыто явление сверхпроводимости, и элемент №80 стал первым сверхпроводником. Сейчас известны десятки сплавов и чистых металлов, приобретающих это свойство при температуре, близкой к абсолютному нулю.
- КАК ОЧИСТИТЬ Hg. В химических лабораториях часто возникает необходимость очистить жидкий металл. Метод, описанный в этой заметке, пожалуй, самый простой из надежных и самый надежный из простых. На штативе крепят стеклянную трубку диаметром 1-2 см; нижний конец трубки оттянут и загнут. В трубку заливают разбавленную азотную кислоту примерно с 5% нитрата закисной ртути Hg2(N03)2. Сверху в трубку вставляют воронку с бумажным фильтром, в дне которого иголкой проделано небольшое отверстие. Воронку заполняют загрязненной ртутью. На фильтре она очищается от механических примесей, а в трубке — от большей части растворенных в ней металлов. Как это происходит? Ртуть — благородный металл, и примеси, например медь, вытесняют ее из Hg2(N03)2; часть примесей просто растворяется кислотой. Очищенная ртуть собирается в нижней части трубки и под действием собственной тяжести передавливается в приемный сосуд. Повторив эту операцию несколько раз, можно достаточно полно очистить ее от примеси всех металлов, стоящих в ряду напряжений левее ртути.
Очистить ртуть от благородных металлов, например золота и серебра, намного сложнее. Чтобы разделить их, применяют перегонку в вакууме.
- ЧЕМ-ТО ПОХОЖА НА ВОДУ. Не только жидкое состояние «роднит» ее с водой. Теплоемкость ртути, как и воды, с ростом температуры (от точки плавления до +80°С) последовательно уменьшается и лишь после определенного температурного «порога» (после 80°С) начинает медленно расти. Если охлаждать элемент №80 очень медленно, ее, как и воду, можно переохладить. В переохлажденном состоянии жидкая ртуть существует при температуре ниже — 50° Ct обычно же она замерзает при — 38,9°С. Кстати, впервые он была заморожена в 1759 г. петербургским академиком И.А. Брауном.
- ОДНОВАЛЕНТНОЙ РТУТИ НЕТ! Это утверждение многим покажется неверным. Ведь еще в школе учат, что, подобно меди, ртуть может проявлять валентности +2 и 1+ . Широко известны такие соединения, как черная закись Hg20 или каломель Hg2Cl2. Но Hg здесь лишь формально одновалентна. Как показали исследования, во всех подобных соединениях содержится группировка из двух атомов ртути: —Hg2— или —Hg—Hg—. Оба атома двухвалентны, но одна валентность каждого из них затрачена на образование цепочки, подобной углеродным цепям многих органических соединений. Ион Hg2 +2 нестоек, нестойки и соединения, в которые он входит, особенно гидроокись и карбонат закисной ртути. Последние быстро разлагаются на Hg и HgO и соответственно Н20 или С02.
ЯД И ПРОТИВОЯДИЕ.
Я худшую смерть предпочту работе на ртутных рудниках, где крошатся зубы во рту.
Р. Киплинг
Пары ртути и ее соединения действительно весьма ядовиты. Жидкая ртуть опасна прежде всего своей летучестью: если хранить ее открытой в лабораторном помещении, то в воздухе создастся парциальное давление ртути 0,001. Это много, тем более что предельно допустимая концентрация ртути в промышленных помещениях 0,01 мг на кубический метр воздуха.
Степень токсического действия металлической ртути определяется прежде всего тем, какое количество успело прореагировать в организме, прежде чем ее вывели оттуда, т. е. опасна не сама ртуть, а ее соединения.
Острое отравление солями ртути проявляется в расстройстве кишечника, рвоте, набухании десен. Характерен упадок сердечной деятельности, пульс становится редким и слабым, возможны обмороки. Первое, что необходимо сделать в такой ситуации, это вызнать у больного рвоту. Затем дать ему молока и яичных белков. Она выводится из организма в основном почками.
При хроническом отравлении Hg и ее соединениями появляются металлический привкус во рту, рыхлость десен, сильное слюнотечение, легкая возбудимость, ослабление памяти. Опасность такого отравления есть во всех помещениях, где Hg находится в контакте с воздухом. Особенно опасны мельчайшие капли разлитой ртути, забившиеся под плинтусы, линолеум, мебель, в щели пола.
Общая поверхность маленьких ртутных шариков велика, и испарение идет интенсивнее. Поэтому случайно разлитую Hg необходимо тщательно собрать. Все места, в которых могли задержаться малейшие капельки жидкого металла, необходимо обработать раствором FeCl3, чтобы связать ртуть химически.
- Космические аппараты нашего времени требуют значительных количеств электроэнергии. Регулировка работы двигателей, связь, научные исследования, работа системы жизнеобеспечения — все это требует электричества. Пока основными источниками тока служат аккумуляторы и солнечные батареи. Энергетические потребности космических аппаратов растут и будут расти. Космическим кораблям недалекого будущего понадобятся электростанции на борту. В основе одного из вариантов таких станций — ядерный турбинный генератор. Во многом он подобен обычной тепловой электростанции, но рабочим телом в нем служит не водяной пар, а ртутный. Разогревает его радиоизотопное горючее. Цикл работы такой установки замкнутый: ртутный пар, пройдя турбину, конденсируется и возвращается в бойлер, где опять нагревается и вновь отправляется вращать турбину.
- ИЗОТОПЫ. Природный элемент состоит из смеси семи стабильных изотопов с массовыми числами 196, 198. 199, 200, 201, 202 и 204. Наиболее распространен самый тяжелый изотоп: его доля — почти 30%, точнее, 29,8. Второй по распространенности — изотоп ртуть-200 (23,13%). А меньше всего в природной смеси ртути-190 — всего 0,146%.
Из радиоактивных изотопов элемента № 80, а их известно 23, практическое значение приобрели только ртуть-203 (период полураспада 46,9 суток) и ртуть-205 (5,5 минуты). Их применяют при аналитических определениях ртути и изучении ее поведения в технологических процессах.
- САМЫЕ КРУПНЫЕ МЕСТОРОЖДЕНИЯ — В ЕВРОПЕ. Это — один из немногих металлов, крупнейшие месторождения которых находятся на европейском материке. Наиболее крупными месторождениями ртути считаются Альмаден (Испания), Монте-Амьята (Италия) и Идрия (Югославия).
- ИМЕННЫЕ РЕАКЦИИ. Для химической промышленности она и сейчас достаточно важна не только как материал катодов в производстве хлора и едкого натра, но и как катализатор. Например, из ацетилена по реакции М.Г. Кучерова, открытой в 1881 г., получается ацетальдегид. Катализатором здесь служит ртутьсодержащая соль, например сульфат HgS04. А вот при растворении отработавших свое урановых блоков как катализатор использовали саму ртуть. Реакция Кучерова — не единственная «именная» реакция с участием ртути или ее соединений. Широко известна и реакция А.Н. Несмеянова, в ходе которой в присутствии солей ртути происходит разложение органических солей диазония и образование ртутьорганических соединений. Они используются в основном для получения других элементоорганических соединений и, ограничено, как фунгициды.
Источник: natural-museum.ru
Химический элемент ртуть. Плотность металла в жидком и твердом агрегатных состояниях
Каждый человек, когда слышит слово «металл», представляет себе твердое блестящее тело, которое кажется холодным, если к нему прикоснуться. Однако в природе существует металл, который при комнатной температуре является жидким. Речь идет о ртути. Рассмотрим в статье свойства этого элемента, обращая особое внимание на вопрос плотности ртути.
Химический элемент
Если взглянуть на таблицу Менделеева, то под номером 80 в ней расположен элемент ртуть. Ему соответствует символ Hg, который имеет латинское название гидраргирум. Это слово с древнегреческого языка переводится как «жидкое серебро», что обусловлено серебристым цветом металла и его жидким состоянием при нормальных условиях.
Перед ртутью в периодической таблице находится золото (Au). Такое соседство не является случайным, ведь многие химические свойства ртути подобны таковым для «царя металлов».
Рассматриваемый элемент не является химически активным, он плохо проводит тепло, однако является хорошим проводником электричества. Ртуть не растворяется в воде, ее способны растворить лишь концентрированные кислоты, например, азотная. В самом жидком металле легко растворяются многие другие металлы, включая серебро и золото. Любопытно, что железо в ртути не растворяется, это позволяет его использовать в качестве материала для контейнеров, содержащих ртуть.
Причина необычных свойств ртути
Уже при -39 o C рассматриваемый металл начинает плавиться и переходит в жидкое состояние, а при температуре 357 o C он начинает кипеть и активно образует пар. Очевидно, что причиной такого поведения являются слабые металлические связи в кристаллической решетке, когда вещество находится в твердом состоянии.
Чтобы понять, почему ртуть жидкая, вспомним, что собой представляет металлическая связь. Согласно упрощенной и наглядной модели, эта химическая связь образуется, когда атомы металла легко отдают слабо связанные валентные электроны в межатомное пространство. Последние образуют электронный газ, который связывает в результате кулоновских взаимодействий положительно заряженные ионы в кристаллической решетке.
Теперь обратимся к атомному строению ртути. Атом этого уникального металла имеет электронную структуру [Xe]4f 14 5d 10 6s 2 . Видно, что все электронные оболочки его завершены, поэтому он очень «неохотно» отдает свои электроны. Чтобы оторвать один электрон из внешнего уровня, понадобится энергия аж в 10 эВ (для примера, температуре 300 К соответствует энергия 0,01 эВ). Поскольку ядро атома ртути прочно связано с валентными электронами, то никакой связи металлической в кристалле этого вещества не образуется. Твердое состояние металла возможно лишь при температуре ниже -39 o C за счет действия слабых сил Ван-дер-Ваальса.
Заметим, что подобной электронной структурой обладают также цинк и кадмий. Оба металла также являются легкоплавкими, однако их температура плавления все же выше, чем у ртути, что обусловлено отсутствием у атомов этих элементов заполненной f-орбитали.
Какая плотность ртути?
Поскольку при нормальных условиях ртуть является текучим веществом, то любопытно узнать, насколько она тяжелая. Плотность ртути в кг на кубический метр составляет 13546. Это значение говорит, что рассматриваемый металл является очень тяжелым. Если ртутью набрать сосуд объемом 1 литр, то его масса составит 13,5 килограмм.
Большая плотность рассматриваемого металла связана с тем, что его атомы имеют относительно большую массу, которая равна 200,59 а.е.м. Для доказательства этого утверждения проведем простой расчет. Он будет заключаться в сравнении плотности ртути и воды. Как известно, вода при 4 o C имеет плотность 1000 кг/м 3 , а молекулярная масса H2O равна 18 а.е.м. Разделим массу атома Hg на массу H2O, получим:
Плотности же рассматриваемых веществ отличаются в 13,5 раз. Мы получили очень близкую цифру, подтвердив тем самым изложенный выше факт. Поскольку расчетная цифра оказалась несколько меньше, чем экспериментальное значение, то это говорит о том, что среднее расстояние между атомами ртути в жидкости меньше, чем расстояние между молекулами воды.
Плотность ртути практически не зависит от температуры, что является справедливым для большинства жидкостей, поскольку коэффициент ее теплового расширения очень маленький (имеет порядок 10 -4 K -1 ).
Твердая ртуть
При температуре ниже -39 o C рассматриваемое вещество кристаллизуется, то есть из жидкого состояния переходит в твердое. Смена агрегатного состояния сопровождается выделением небольшого количества теплоты (2,3 кДж/моль), что свидетельствует об образовании слабых химических связей в твердом теле. Для типичных металлов теплота образования на порядок больше, чем у ртути.
Переход в твердое состояние сопровождается небольшим уменьшением объема и, как следствие, незначительным увеличением плотности ртути. Она становится равной 14184 кг/м 3 , то есть возрастает всего на 4,8 % относительно этой величины для жидкости.
Как большая плотность проявляет себя на практике?
Будучи плотной жидкостью, ртуть также обладает огромным поверхностным натяжением. Когда ртуть разливают практически на любую поверхность, то она собирается в круглые капли.
Большая плотность приводит к тому, что любой железный предмет спокойно плавает на ее поверхности в результате действия на него архимедовой силы.
Источник: www.syl.ru