Знакомый дал на идентификацию кусок кабеля. Я перерыл весь интернет и оказался бессилен.
Легенда такова, что лет ..тцать назад купил он у мужика за 3 бутылки водки бухту 100м этого кабеля чтобы провести себе свет от кооператива в гараж. Провёл. Лампочка горит чуть больше чем в полнакала. Сварочник не работает вообще даже не гудит. Купил нормальный кабель, этот снял и положил на чердак.
Кабель выглядит так: по конструкции похож на ПУНП — плоский, двухжильный, жилы одинарные, диаметром 1.75мм, каждая в своей изоляции(белая, фиолетовая) и вместе они в общей изоляции(коричневая).
ОДНАКО если его зачистить то видно что одна жила по виду напоминает алюминий а вторая стальную проволоку (чёрная сверху если содрать напильником то блестит но не магнитится). При этом обе жилы гораздо жёстче и алюминия и меди. Больше похоже на стальную проволоку (но не пружинят, гнутся также как и медные бы гнулись). Но при этом не магнитятся.
Чёрная жила задранная напильником до блеска со временем темнеет. При нагреве на газовой плите раскалются докрасна, но не плавятся. От длительных частых перегибов пассатижами ломаются, как медные.
КАК ВСЕ ПРОПУСКАЛИ МИМО РТУТЬ С ПЛАТИНОЙ 99.9% И НЕ ЗАДУМЫВАЛИСЬ! Я в ШОКЕЕЕЕЕЕ……
Подключенный через 10-ти метровый отрезок этого кабеля, перфоратор 1250Вт не может развить полную мощность.
Что же это за кабель оказался такой, подскажите??
Источник: mastergrad.com
Электрическое сопротивление проводников
Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.
Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии.
Движущиеся электроны (от положительного полюса источника к отрицательному) ударяются о колеблющиеся ионы кристаллической решетки в проводнике и замедляют их движение
Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.
Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.
Омметр — прибор для измерения электрического сопротивления
Сопротивление обозначается латинскими буквами R или r .
За единицу электрического сопротивления принят ом в честь Георга Симона Ома (1784–1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением.
Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм 2 при температуре 0° С.
Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4 ом.
Для измерения сопротивлений большой величины принята единица, называемая мегомом.
Один мегом равен одному миллиону ом.
Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.
Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению.
Обратной величиной электрического сопротивления является физическая величина, называемая электропроводностью.
Медные токоведущие шины в распределительном устройстве
Электрической проводимостью (электропроводностью) называется способность материала пропускать через себя электрический ток.
Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/ R , обозначается проводимость латинской буквой g.
Единицей электрической проводимости является сименс. Она была так названа в честь немецкого ученого Вернера Сименса (1816 — 1892).
Слово сопротивление также относится к пассивному электрическому компоненту, правильное название которого — резистор, характеризующийся одним свойством — электрическим сопротивлением.
Причина включения резистора в электрическую цепь обычно состоит в том, чтобы уменьшить величину электрического тока или получить определенное падение напряжения. Резистор часто неправильно называют сопротивлением и это может привести к двусмысленности . Величину сопротивления резисторов обозначают либо написанием числа на резисторе, либо, что чаще, цветными полосками.
Резисторы для электронных схем
Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления.
Величина электрического сопротивления определяется материалом, формой и температурой проводника. Величина сопротивления зависит от длины проводника (прямопропорционально), от содержания в поперечном сечении проводника (обратно пропорционально), от материала проводника (удельное электрическое сопротивление) и от температуры.
Так как сопротивление различных проводников зависит от материала, из которого они изготовлены, то для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.
Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм 2 . Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.
Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа — 0,12, удельное сопротивление константана — 0,48, удельное сопротивление нихрома — 1-1,1.
Вещества, обладающие высоким удельным сопротивлением, являются изоляторами. Наиболее совершенным изолятором является янтарь, а также в качестве изоляторов применяют ПВХ, слюду, стекло, фарфор и т. д.
Хорошие проводники, такие как серебро, медь и алюминий, имеют самое низкое удельное сопротивление
Электрический провод с медной жилой
Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.
Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь поперечного сечения проводника :
где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм 2 .
Площадь поперечного сечения круглого проводника вычисляется по формуле:
S = ( Пи х d 2 )/ 4
где Пи — постоянная величина, равная 3,14; d — диаметр проводника.
А так определяется длина проводника:
Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.
Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:
Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:
Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.
Поперечный разрез силового кабеля на 400 кВ с изоляцией из сшитого полиэтилена и медной жилой. Сечение кабеля — 1600 мм 2 . Такой кабель используется в воздушно-кабельной линии электропередачи 380 кВ в Берлине. Линия протяженностью 34 км построена в 2000-м году.
Это нужно запомнить:
1. Если к одному и тому же источнику электрического напряжения последовательно подключить проводники из разных материалов, но одинаковой длины и одинакового сечения, то мы будем измерять амперметром, что по каждому проводнику протекает электрический ток разной величины. Каждый материал оказывает различное сопротивление прохождению тока.
2. Если мы используем для измерения проводники из одного и того же материала, которые будут иметь одинаковый диаметр, но всегда разную длину, то амперметр будет определять разный проходящий ток для каждой длины проводника. Наибольший ток будет течь по самому короткому проводу.
3. Если мы используем для измерения проводники из одного материала одинаковой длины, но разного сечения, то мы будем измерять разные значения тока для каждого проводника с разным сечением. Наибольший ток будет течь по проводу с наибольшим сечением.
Медные клеммные колодки для соединения жил проводов и кабелей в электрощитах
Еще одной причиной, влияющей на сопротивление проводников, является температура .
Сопротивление проводников и полупроводников зависит от температуры. Сопротивление проводников увеличивается с повышением температуры (положительный температурный коэффициент электрического сопротивления), а сопротивление полупроводников, углерода и некоторых специальных сплавов металлов с повышением температуры уменьшается (отрицательный температурный коэффициент электрического сопротивления). Электрическое сопротивление всегда имеет положительное значение. Хорошие проводники имеют малое сопротивление, плохие — высокое.
Различные проводники имеют разное сопротивление. Соединительные провода в электрической цепи имеют низкое сопротивление, чтобы как можно меньше уменьшить ток, проходящий через цепь. С другой стороны, резистивные проводники, используемые в нагревательных кабелях и электрических нагревательных приборах и резистивные нити накаливания лампочек имеют относительно высокое сопротивление, которые значительно нагреваются из-за своего высокого сопротивления при достаточном напряжении.
Нагревательный элемент для электрической плиты
Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1° C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.
Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры.
При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника.
С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .
Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре — 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.
Новый сверхпроводящий материал, который был открыт в 2021 году, зажатый между алмазами, может проводить электричество без электрического сопротивления при комнатной температуре
При очень низких температурах, близких к абсолютному нулю, колебательное движение молекул настолько мало, что свободные электроны движутся в них без всякого сопротивления. Ток, введенный в такой сильно охлаждаемый проводник, протекает непрерывно и без малейших потерь.
Постепенно охлаждая образцы платины и золота, голландский физик и химик Хейке Камерлинг-Оннес (1853 — 1926) обнаружил, что их электрическое сопротивление уменьшается. Когда он проделал свой опыт с ртутью, то при температуре около 4,27 К ее сопротивление стало резко падать, а при температуре около 4,22 К полностью исчезло. В последующие годы он открыл сверхпроводимость и в других металлах.
В 2015 году физик Института химии им. Макса Планка Михаил Еремец и его команда сжали водород и серу для достижения сверхпроводимости при -70°C. Спустя несколько лет две исследовательские группы экспериментировали с соединениями лантана и водорода при высоком давлении. Эксперименты показали, что сверхпроводимость возможна при более высоких температурах, таких как -23°C и -13°C, но некоторые эксперименты были успешными и при 7°C.
Что еще почитать:
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Источник: electricalschool.info
Блогеры режут лёд серебром, но они не повелители стихий. Это тест на подлинность металла и магия физики
Тиктокеры узнали, что настоящее серебро может плавить лёд (и это не шутка). Достаточно сделать пару движений, и кусочек от ледяного сердца партнёра ваш. Но люди, у которых была оценка «отлично» по физике, знают, что дело тут не в магии.
Пользовательница тиктока под никнеймом evohtx положила начало тренду, в рамках которого юзеры режут лёд серебром. На видео, опубликованном 23 февраля, блогерша продемонстрировала, как серебряный кулон буквально плавит металл.
А вы знали, что настоящее серебро плавит лёд? Смотри, как я проверяю своё украшение.
Контент стал вирусным и набрал около двух миллионов просмотров. Полное видео можно посмотреть ниже.
К тренду присоединились и другие тиктокеры: парень под никнеймом sheridanahearn вместо украшений проверил на фейк серебряную расчёску. Результат оказался положительным — ручка аксессуара расплавила лёд.
В комментариях под оригинальным постом зрители признались, что не знали о подобном лайфхаке.
Я не знала этого.
Многие юзеры решили посмотреть, что будет, проверив совет на собственном опыте.
Пора проверить мой браслет с подвесками от Джеймса Эйвери.
Впрочем, тиктокеры, которые оказались знакомы с законами физики, заверили: сам металл не плавит лёд, но делает это с помощью проводника тепла (например, руки человека).
Серебро не плавит лёд, оно просто считается хорошим проводником для тепла. Вот что плавит лёд.
Редакция Medialeaks не смогла пройти мимо и влилась в тренды, проведя эксперимент. И да, лёд не выдержал схватку с украшением из чистого серебра.
Другой тиктокер использовал для доказательств своей теории целую лабораторию: блогер показал, какие бактерии обитают на косметических кистях и спонжах. Но когда девушки увидели гостей, они навсегда отказались от мейкапа.
А юзерам, которые следят за скандалом блогерши Instasamka и стилисток, понадобилась зелёнка. Пользователи платформы облили себя средством и попытались смыть. Но не всё оказалось так просто, даже в миксе с перекисью водорода и спиртовыми духами.
Источник: medialeaks.ru