Самый твердый после алмаза 6 букв

Содержание

Самые твердые материалы на Земле ТОП 10

Каждый из вас знает, что эталоном твердости на сегодня так и остается алмаз. При определении механической твердости существующих на земле материалов твердость алмаза берется как эталон: при измерениях методом Мооса – в виде поверхностного образца, методами Виккерса или Роквелла – в качестве индентора (как более твердое тело при исследовании тела с меньшей твердостью). На сегодняшний день можно отметить несколько материалов, твердость которых приближается к характеристикам алмаза. Рекомендуем вам купить шармы для браслетов пандора, поскольку у них используются качественные драгоценные камни и чистое серебро.

Сравниваются в данном случае оригинальные материалы, исходя из их микротвердости по методу Виккерса, когда материал считается сверхтвердым при показателях в более 40 ГПа. Твердость материалов может изменяться, в зависимости от характеристик синтеза образца или направления приложенной к нему нагрузки.

Колебания показателей твердости от 70 до 150 ГПа – общеустановленное понятие для твердых материалов, хотя эталонной величиной принято считать 115 ГПа. Давайте рассмотрим 10 самых твердых материалов, кроме алмаза, которые существуют в природе.

ЭКСТРЕМАЛЬНЫЕ КАМУФЛЯЖНЫЕ ПРЯТКИ от Маши из «Маша и медведь»

Самые твердые материалы на Земле ТОП 10

10. Субоксид бора (B6O) — твердость до 45 ГПа

Субоксид бора обладает способностями создавать зерна, имеющие форму икосаэдров. Образованные зерна при этом не являются обособленными кристаллами или разновидностями квазикристаллов, представляя собой своеобразные кристаллы-двойники, состоящие из двух десятков спаренных кристаллов-тетраэдров.

Субоксид бора

Содержание недостаточного количества атомов кислорода в субоксиде бора обеспечивает материалу характеристики, свойственные керамическим материалам. Данное вещество имеет качества химической инертности, повышенной прочности, устойчивости к истиранию при невысоких показателях плотности, а его монокристаллы обладают твердостью в 45 ГПа.

10. Диборид рения (ReB2) — твердость 48 ГПа

Многие исследователи ставят под сомнение вопрос, может ли этот материал причисляться к материалам сверхтвердого типа. Это вызвано весьма необычными механическими свойствами соединения.

Диборид рения

Послойное чередование разных атомов делает этот материал анизотропным. Поэтому измерение показателей твердости получаются разными при наличии разнотипных кристаллографических плоскостей. Таким образом, испытаниями диборида рения при малых нагрузках обеспечивается твердость в 48 ГПа, а при увеличении нагрузки твердость становится намного меньше и составляет приблизительно 22 ГПа.

Читайте также:
Через сколько можно менять сережку после прокола пупка

6 ЛЕТ ПОСЛЕ ИНСУЛЬТА. ЧТО ВОССТАНОВИЛОСЬ? СРОКИ?

8. Борид магния-алюминия (AlMgB14) — твердость до 51 ГПа

Состав представляет собой смесь алюминия, магния, бора с невысокими показателями трения скольжения, а также высокой твердостью. Эти качества могли бы стать находкой для производства современных машин и механизмов, работающих без смазки. Но использование материала в такой вариации пока что считается непомерно дорогим.

Борид магния-алюминия

AlMgB14 — специальные тоненькие пленки, создающиеся при помощи лазерного напыления импульсного типа, имеют способность обладать микротвердостью до 51 ГПа.

7. Бор-углерод-кремний — твердость до 70 ГПа

Основа такого соединения обеспечивает сплаву качества, подразумевающие оптимальную устойчивость к химическим воздействиям негативного типа и высокой температуре. Такой материал обеспечивается микротвердостью до 70 ГПа.

6. Карбид бора B4C (B12C3) — твердость до 72 ГПа

Еще один материал – карбид бора. Вещество достаточно активно стало использоваться в разных сферах промышленности практически сразу же после его изобретения в 18 веке.

Бронежилет из карбида бора

Микротвердость материала достигает 49 ГПа, но доказано, что и этот показатель можно увеличить посредством добавления ионов аргона в строение кристаллической решетки – до 72 ГПа.

5. Нитрид углерода-бора — твердость до 76 ГПа

Исследователи и ученые со всего мира давно пытаются синтезировать многосложные сверхтвердые материалы, в чем уже были достигнуты ощутимые результаты. Компонентами соединения являются атомы бора, углерода и азота – близкие по размерам. Качественная твердость материала доходит до 76 ГПа.

Нитрид углерода-бора

4. Наноструктурированный кубонит — твердость до 108 ГПа

Материал еще называется кингсонгитом, боразоном или эльбором, а также обладает уникальными качествами, успешно используемыми в современной промышленности. При показателях твердости кубонита в 80-90 ГПа, близких к алмазному эталону, сила закона Холла-Петча способна обусловить их значительный рост.

Наноструктурированный кубонит - кингсонгит, боразон или эльбор

Это означает, что при уменьшении размеров кристаллических зерен увеличивается твердость материала – существуют определенные возможности увеличения до 108 ГПа.

3. Вюртцитный нитрид бора — твердость до 114 ГПа

Вюрцитная кристаллическая структура обеспечивает высокие показатели твердости данному материалу. При локальных структурных модификациях, во время приложения нагрузки конкретного типа, связи между атомами в решетке вещества перераспределяются. В этот момент качественная твердость материала становится больше на 78 %.

Вюртцитный нитрид бора

2. Лонсдейлит — твердость до 152 ГПа

Лонсдейлит является аллотропной модификацией углерода и отличается явной схожестью с алмазом. Обнаружен твердый природный материал был в метеоритном кратере, образовавшись из графита – одного из компонентов метеорита, однако рекордной степенью прочности он не обладал.

Лонсдейлит - твердость до 152 ГПа

Учеными было доказано еще в 2009 году, что отсутствие примесей способно обеспечить твердость, превышающую твердость алмаза. Высокие показатели твердости способны обеспечиваться в этом случае, как и в случае с вюртцитным нитридом бора.

1. Фуллерит — твердость до 310 ГПа

Полимеризованный фуллерит считается в наше время самым твердым материалом, известным науке. Это структурированный молекулярный кристалл, узлы которого состоят из целых молекул, а не из отдельных атомов.

 Фуллерит - твердость до 310 ГПа

Твердость фуллерита составляет до 310 ГПа, и он способен поцарапать алмазную поверхность, как обычный пластик. Как видите, алмаз это больше не самый твёрдый природный материал в мире, науке доступны более твердые соединения.

Определение твердости по Виккерсу (ГОСТ 2999-59)

Пока это самые твердые материалы на Земле, известные науке. Вполне возможно, в скором времени нас ждут новые открытия и прорыв в области химии/физики, что позволит добиться более высокой твердости.

Читайте также:
Примета терять серьги что значит
Источник

25 самых крепких известных материалов

Знаете ли вы, какой материал на нашей планете считается самым крепким? Со школы нам всем известно, что алмаз — крепчайший минерал, но он далеко не самый крепкий. Твёрдость — не главное свойство, которым характеризуется материя. Одни свойства могут мешать появлению царапин, другие — способствовать эластичности. Хотите знать больше?

Перед вами рейтинг материалов, которые будет очень сложно разрушить.

Алмаз

Классический пример прочности, засевший в учебниках и головах. Его твёрдость означает устойчивость к царапинам. В шкале Мооса (качественная шкала, которая измеряет сопротивление различных минералов) алмаз показывает результат в 10 (шкала идёт от 1 до 10, где 10 — самое твёрдое вещество). Алмаз настолько твёрдый, что другие алмазы должны быть использованы для его резки.

Шёлк паука Дарвина

Этот материал часто упоминается как самое сложное биологическое вещество в мире (хотя это утверждение сейчас оспаривается изобретателями), сеть паука Дарвина сильнее, чем сталь и обладает большим запасом жёсткости, чем кевлар. Её вес не менее замечателен: нить, достаточно длинная, чтобы окружить Землю, весит всего 0,5 кг.

Аэрографит

Эта синтетическая пена является одним из самых лёгких строительных материалов в мире. Аэрографит примерно в 75 раз легче пенополистирола (но намного сильнее!). Этот материал может быть спрессован в 30 раз от его первоначального размера без ущерба для его структуры. Ещё один интересный момент: аэрографит может выдержать массу в 40 000 раз больше собственного веса.

Палладиевое микролегированное стекло

Это вещество разработано учёными в Калифорнии. Микролегированное стекло имеет почти совершенное сочетание жёсткости и прочности. Причиной этого является то, что его химическая структура снижает хрупкость стекла, но сохраняет жёсткость палладия.

Карбид вольфрама

Карбид вольфрама невероятно твёрдый и имеет качественно высокую жёсткость, но он довольно хрупкий, его легко можно согнуть.

Карбид кремния

Этот материал используется в создании брони для боевых танков. Фактически он используется почти во всём, что может защищать от пуль. Он имеет рейтинг твёрдости Мооса 9, а также имеет низкий уровень теплового расширения.

Кубический нитрид бора

Примерно такой же сильный, как алмаз, кубический нитрид бора имеет одно важное преимущество: он нерастворим в никеле и железе при высоких температурах. По этой причине его можно использовать для обработки этих элементов (алмазные формы нитридов с железом и никелем при высоких температурах).

Dyneema

Считается самым сильным волокном в мире. Возможно, вас удивит факт: «дайнима» легче воды, но она может остановить пули!

Титановые сплавы

Титановые сплавы чрезвычайно гибкие и имеют очень высокую прочность на растяжение, но не имеют такой жёсткости, как стальные сплавы.

Аморфные сплавы

Liquidmetal разработан в компании Caltech. Несмотря на название, этот металл не является жидким и при комнатной температуре имеют высокий уровень прочности и износотойкости. При нагревании аморфные сплавы могут менять форму.

Наноцеллюлоза

Это новейшее изобретение создаётся из древесной массы, при этом обладая большей степенью прочности, чем сталь! И гораздо дешевле. Многие учёные считают наноцеллюлозу дешёвой альтернативой палладиевому стеклу и углеродному волокну.

Читайте также:
С чем носить сапфиры

Зубы моллюсков

Ранее мы упоминали, что пауки Дарвина плетут нить одного из самых прочных органических материалов на Земле. Тем не менее зубы морского блюдечка оказались ещё сильнее, чем паутины. Зубы лимпетов чрезвычайно жёсткие. Причина этих удивительных характеристик в назначении: сбор водорослей с поверхности горных пород и кораллов. Учёные считают, что в будущем мы могли бы скопировать волокнистую структуру зубов лимпета и использовать её в автомобильной промышленности, кораблях и даже авиационной индустрии.

Мартенситностареющие стали

Это вещество сочетает в себе высокий уровень прочности и жёсткости без потери эластичности. Стальные сплавы этого типа находят применение в аэрокосмических и промышленно-производственных технологиях.

Осмий

Осмий чрезвычайно плотен. Его используют при изготовлении вещей, требующих высокого уровня прочности и твёрдости (электрические контакты, ручки для наконечников и т.д.).

Кевлар

Используемый во всём, от барабанов до пуленепробиваемых жилетов, кевлар является синонимом твёрдости. Кевлар — это тип пластика, который обладает чрезвычайно высокой прочностью на растяжение. Фактически она примерно в 8 раз больше, чем у стальной проволоки! Он также может выдерживать температуры около 450 ℃.

Spectra

Высокоэффективный полиэтилен является действительно прочным пластиком. Эта лёгкая, прочная нить может выдерживать невероятное натяжение и в десять раз прочнее стали. Подобно кевлару, Spectra также используется для баллистических устойчивых жилетов, шлемов и бронетехники.

Графен

Лист графена (аллотроп углерода) толщиной в один атом в 200 раз сильнее, чем сталь. Хотя графен похож на целлофан, он действительно поражает. Понадобится школьный автобус, балансирующий на карандаше, чтобы проткнуть стандартный лист А1 из этого материала!

Buckypaper

Эта нанотехнология изготовлена ​​из углеродных труб, которые в 50 000 раз тоньше человеческих волос. Это объясняет, почему он в 10 раз легче, чем сталь, но в 500 раз сильнее.

Металлическая микрорешётка

Самый лёгкий в мире металл, металлическая микрорешётка также является одним из самых лёгких конструкционных материалов на Земле. Некоторые учёные утверждают, что он в 100 раз легче пенополистирола! Пористый, но чрезвычайно сильный материал, он используется во многих областях техники. Boeing упомянул об использовании его при изготовлении самолётов, в основном в полах, сидениях и стенах.

Углеродные нанотрубки

Углеродные нанотрубки (УНТ) можно описать как «бесшовные цилиндрические полые волокна», которые состоят из одного скатанного молекулярного листа чистого графита. В результате получается очень лёгкий материал. В наномасштабе углеродные нанотрубки имеют прочность в 200 раз больше, чем у стали.

Аэрографен

Также известен как графеновый аэрогель. Представьте себе прочность графена в сочетании с невообразимой лёгкостью. Аэрогель в 7 раз легче воздуха! Этот невероятный материал может полностью восстановиться после сжатия в более чем 90% и может поглощать до 900 раз больше собственного веса в масле. Есть надежда, что этот материал можно будет использовать для ликвидации разливов нефти.

Неназванное вещество, находящееся в разработке в Массачусетском технологическом институте

На момент написания этой статьи учёные из Массачусетского технологического института полагали, что они обнаружили секрет максимизации 2-мерной прочности графена в 3-х измерениях. Их пока ещё неназванное вещество может иметь примерно 5% плотности стали, но в 10 раз больше прочности.

Карбин

Несмотря на то что он является единой цепочкой атомов, карбин имеет удвоенную прочность на растяжение от графена и в три раза большую жёсткость, чем алмаз.

Читайте также:
Лайм одежда метрополис на каком этаже

Вюрцит нитрид бора

Это природное вещество производится в жерле действующих вулканов и на 18% прочнее, чем алмаз. Это одно из двух веществ, встречающихся в природе, которые, как было установлено, в настоящее время превосходят алмазы по твёрдости. Проблема в том, что там не так много этого вещества, и сейчас трудно сказать наверняка, является ли это утверждение на 100% верным.

Лонсдейлит

Также известный как гексагональный алмаз, это вещество состоит из атомов углерода, но они просто расположены по-другому. Наряду с вюрцитом нитридом бора это одно из двух природных веществ тверже алмаза. На самом деле Лондсдейлит 58% тверже! Однако, как и в случае с предыдущим веществом, он находится в относительно малых объёмах. Иногда он возникает, когда графитовые метеориты, сталкиваются с планетой Землёй.

Будущее не за горами, поэтому к концу XXI века можно ожидать появление сверхпрочных и сверхлёгких материалов, которые придут на смену кевлару и алмазам. А пока остаётся только удивляться развитию современных технологий.

Источник

Твёрдость алмаза

Пожалуй, всем известно, что алмаз — самый твёрдый минерал на земле. Благодаря такой характеристике, самоцвет часто используют не только в ювелирной промышленности, но и в других сферах, где твёрдость имеет высокое значение. Всем знакомы такие понятия, как «алмазное напыление», «алмазная крошка» или «алмазное бурение». Но почему же камень обладает таким высоким показателем как твёрдость, ведь он, как и графит, полностью состоит из углерода? А графит, как известно, имеет совсем противоположный показатель по твёрдости, который равен 1-2 по шкале Мооса.

Почему алмаз твёрдый

Почему алмаз твёрдый

Иногда тяжело представить, что мягкий черный графит и твердый прозрачный алмаз состоят из одних и тех же атомов — атомов углерода. Свойства этих минералов так отличаются только по той причине, что у них разные типы кристаллических решёток.

Алмаз и графит

Так, кристаллическая решётка графита содержит слабо связанные между собой слои. Алмаз же состоит из атомов, которые очень прочно связаны между собой по всем направлениям, что и обуславливает самоцвету такую исключительную твёрдость.

Прочность алмаза

Прочность алмаза

О прочности самого ценного камня уже очень много сказано. Минерал практически невозможно расколоть или раскрошить. Мало того, при попытке поцарапать самоцветом стекло, он оставит на нём след в виде царапины, а сам при этом нисколько не пострадает. Но так ли это на самом деле?

Можно ли разбить алмаз

Можно ли разбить алмаз

Безусловно, если положить камень под пресс и спустить рычаг, минерал сразу же рассыпется. Но вот при незначительных ударах у вас вряд ли получится повредить структуру самоцвета? Так можно ли разбить алмаз? Конечно же, можно. Но тут дело даже не в силе удара, а в правильности его направления.

Для примера можно вспомнить историю со знаменитым алмазом Куллинан. Он имел просто внушительные размеры, ведь его масса равнялась 3106,75 карата. Это чуть более 600 грамм. Так вот при попытке изготовить из минерала бриллианты, ювелиры столкнулись с трудностями, ведь расколоть самоцвет оказалось не так уж просто.

Но в какой-то момент Йозеф Ашер, лучший гранильщик того времени, который и изучал Куллинан, заметил на поверхности камня небольшую трещину. Именно этот незначительный дефект позволил разобраться Ашеру, как же расколоть кристалл. Он приставил к царапине стамеску и ударил по ней молотком. Расчёт оказался более чем правильным — минерал раскололся на две части.

Читайте также:
Какие камни подходят женщинам по гороскопу

Таким образом, можно сделать вывод, что алмаз всё-таки можно разбить, если верно рассчитать место удара и воздействовать на него в правильном направлении.

Что крепче алмаза

Что крепче алмаза

Если сравнивать алмаз с другими природными минералами, то прочнее него нет ничего. По шкале Мооса он получил наивысший балл — 10. Только корунд и топаз лишь немного уступают ему по этой характеристике.

Если же сравнивать его с другими кристаллическими веществами, то крепче него считаются:

  • фуллерит — молекулярные кристаллы, которые при полимеризации соединяются между собой прочными связями, схожими с алмазными;
  • арсенид галлия (GaAs) — химическое соединение галлия и мышьяка;
  • эльбор или боразон — по твёрдости имеет такую же оценку (10 по шкале Мооса).

Конечно же, не стоит забывать, что в современной науке учёные постоянно открывают новые сплавы, которые отличаются ничуть не меньшей твёрдостью, чем алмаз. Но если рассматривать камень исключительно как драгоценный камень (бриллиант), то твёрже его нет ничего на планете Земля.

Источник

Если алмаз самый твердый материал, то чем его обрабатывают?

Если алмаз самый твердый материал, то чем его обрабатывают?

Интересно

Алмаз считается одним из ценнейших камней на Земле. С его использованием создают большое количество драгоценностей, а при обнаружении новых залежей тут же начинаются раскопки с целью добычи. Многие знают, что алмаз также считается самым твердым материалом. Однако если материал обладает такой прочностью, чем его обрабатывают?

В каких странах добывают алмазы?

Мест по добыче алмазов на Земле присутствует большое множество. Сейчас человечество не испытывает дефицита в данном камне, причем добыча осуществляется на территории нескольких стран. Однако из-за сложности обработки он по-прежнему остается дорогим.

На данный момент лидерами по добыче алмазов являются:

Таким образом, Российская Федерация является лидером по добыче алмазов в мире, поскольку на нее приходится большая доля залежей. В других странах, не вошедших в список, в общей сумме добывается лишь 3,4% от общего количества.

Алмазы добываются из кимберлитовых трубок – мест на планете, где происходит их месторождение. Камни формируются глубоко под землей, после чего постепенно поднимаются наверх и выходят наружу вместе с лавой.

Чем обрабатывают алмаз?

Сравнение алмаза (справа) и обработанного бриллианта (слева)

Сравнение алмаза (справа) и обработанного бриллианта (слева)

Для обработки драгоценного камня также используется алмаз. В первую очередь ювелиры изучают попавший к ним образец. Главной задачей является определение места с наименьшей прочностью. Именно в этой точке и начнется обработка материала. Во время работы используются специальные диски, покрытые алмазной крошкой.

Процесс огранки алмаза

Процесс огранки алмаза

Интересный факт: толщина покрытия одного диска, используемого для обработки, равна нескольким сотым долям миллиметра.

Когда начинается обработка, диск соприкасается с поверхностью алмаза, происходит распил. Однако поскольку соприкасаются два однородных материала, прочность которых практически не отличается, процедура длится очень долго. В среднем, мастеру на распил нужно потратить несколько часов. За время всего процесса теряется примерно половина исходной массы камня, поскольку она превращается в крошку.

Огранка алмаза

Огранка алмаза

Сейчас все чаще используют специальные лазеры. Они помогают быстрее осуществить распил и сохранить целой большую часть драгоценного камня.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник
Рейтинг
Загрузка ...