Серебро
Серебро — элемент побочной подгруппы первой группы, 5-ого периода повторяющейся системы хим частей, с атомным номером 47. Обозначается эмблемой Ag (лат. Argentum). Один из дефицитных частей. Обычное вещество серебро (CAS-номер: 7440-22-4) — ковкий, пластичный великодушный металл серебристо-белого цвета. Кристаллическая решётка — гранецентрированная кубическая. Температура плавления — 963°C, плотность — 10,5 г/см³.
Серебро понятно с древних времён. Это связано с тем, что в своё время серебро, равно как и золото, нередко встречалось в самородном виде — его не приходилось выплавлять из руд. Это предназначило достаточно значительную роль серебра в культурных традициях разных народов. В Ассирии и Вавилоне серебро числилось священным металлом и являлось эмблемой Луны. В средние векасеребро и его соединения были очень популярны посреди алхимиков. С середины XIII века серебро становится обычным материалом для производства посуды. Не считая того, серебро и до настоящего времени употребляется для чеканки монет.
Серебро — САМЫЙ БЛЕСТЯЩИЙ МЕТАЛЛ НА ЗЕМЛЕ!
Происхождение названия
Довольно разумеется, что русск. серебро , польск. srebro , болг. сребро , ст.-слав. сьребро всходят к праславянскому *sьrebro, которое имеет соответствия в балтийских (лит. sidabras , др.-прусск. sirablan) и германских (готск. silubr , нем. Silber , англ. silver ) языках. Дальнейшая этимология за пределами германо-балто-славянского круга языков неясна, предполагают либо сближение с анатолийским subau-ro «блестящий», либо раннее заимствование из языков Ближнего Востока: ср. аккадск. sarpu «очищенное серебро», от аккадск. sarapu «очищать, выплавлять». По-гречески серебро — «άργυρος», «árgyros», от индоевропейского корня «*H₂erǵó-, *H₂erǵí-», означающего «белый», «блистающий». Отсюда происходит и его латинское название — «argentum».
Нахождение в природе
Определённая часть благородных и цветных металлов встречается в природе в самородной форме. Известны и документально подтверждены факты нахождения не просто больших, а огромных самородков серебра. Так, например, в 1477 году на руднике «Святой Георгий» (месторождение Шнееберг в Рудных горах в 40-45 км от города Фрайберг) был обнаружен самородок серебра весом 20 т. Глыбу серебра размером 1 х 1 х 2,2 м выволокли из горной выработки, устроили на ней праздничный обед, а затем раскололи и взвесили.
В Дании, в музее Копенгагена, находится самородок весом 254 кг, обнаруженный в 1666 году на норвежском руднике Конгсберг. Крупные самородки обнаруживали и на других континентах. В настоящее время в здании парламента Канады хранится одна из добытых на месторождении Кобальт в Канаде самородных пластин серебра, имеющая вес 612 кг. Другая пластина, найденная на том же месторождении и получившая за свои размеры название «серебряный тротуар», имела длину около 30 м и содержала 20 т серебра. Однако, при всей внушительности когда-либо обнаруженных находок, следует отметить, что серебро химически более активно, чем золото, и по этой причине реже встречается в природе в самородном виде.
Известно более 50 природных минералов серебра, из которых важное промышленное значение имеют лишь 15-20, в том числе:
Как и другим благородным металлам, серебру свойственны два типа проявлений:
- собственно серебряные месторождения, где оно составляет более 50 % стоимости всех полезных компонентов;
- комплексные серебросодержащие месторождения (в которых серебро входит в состав руд цветных, легирующих и благородных металлов в качестве попутного компонента).
Собственно серебряные месторождения играют достаточно существенную роль в мировой добыче серебра, однако следует отметить, что основные разведанные запасы серебра (75 %) приходятся на долю комплексных месторождений.
Физические свойства
Чистое серебро — довольно тяжёлый (легче свинца, но тяжелее меди), необычайно пластичный серебристо-белый металл (коэффициент отражения света близок к 100 %). Тонкая серебряная фольга в проходящем свете имеет фиолетовый цвет. C течением времени металл тускнеет, реагируя с содержащимися в воздухе следами сероводорода и образуя налёт сульфида. Обладает высокой теплопроводностью. При комнатной температуре имеет самую высокую электропроводность среди всех известных металлов.
Химические свойства
Серебро, будучи благородным металлом, отличается относительно низкой реакционной способностью, оно не растворяется в соляной и разбавленной серной кислотах. Однако в окислительной среде (в азотной, горячей концентрированной серной кислоте, а также в соляной кислоте в присутствии свободного кислорода) серебро растворяется:
Растворяется оно и в хлорном железе, что применяется для травления:
Серебро также легко растворяется в ртути, образуя амальгаму (жидкий сплав ртути и серебра).
Серебро не окисляется кислородом даже при высоких температурах, однако в виде тонких пленок может быть окислено кислородной плазмой или озоном при облучении ультрафиолетом. Во влажном воздухе в присутствии даже малейших следов двухвалентной серы (сероводород, тиосульфаты, резина) образуется налет малорастворимого сульфида серебра, обуславливающего потемнение серебряных изделий:
Свободные галогены легко окисляют серебро до галогенидов:
Однако на свету эта реакция обращается, и галогениды серебра (кроме фторида) постепенно разлагаются.
При нагревании с серой серебро дает сульфид.
Наиболее устойчивой степенью окисления серебра в соединениях является +1. В присутствии аммиака соединения серебра (I) дают легко растворимый в воде комплекс [Ag(NH3)2] + . Серебро образует комплексы так же с цианидами, тиосульфатами. Комплексообразование используют для растворения малорастворимых соединений серебра, для извлечения серебра из руд. Более высокие степени окисления (+2, +3) серебро проявляет только в соединении с кислородом (AgO, Ag2O3) и фтором (AgF2, AgF3), такие соединения гораздо менее устойчивы, чем соединения серебра (I).
Соли серебра (I), за редким исключением (нитрат, фторид), нерастворимы в воде, что часто используется для определения ионов галогенов (хлора, брома, йода) в водном растворе.
Применение
- Так как обладает наибольшей электропроводностью, теплопроводностью и стойкостью к окислению кислородом при обычных условиях, применяется для контактов электротехнических изделий, например, контакты реле, ламели, а также многослойных керамических конденсаторов.
- В составе припоев: медносеребряный припой ПСР-45 используется для пайки медных котлов, чем выше процент серебра, тем выше качество; иногда также, добавляя его к свинцу в количестве 5 %, им заменяют оловянный припой.
- В составе сплавов: для изготовления катодовгальванических элементов (батареек).
- Применяется как драгоценный металл в ювелирном деле (обычно в сплаве с медью, иногда с никелем и другими металлами).
- Используется при чеканке монет, наград — орденов и медалей.
- Галогениды серебра и нитрат серебра используются в фотографии, так как обладают высокой светочувствительностью.
- Из-за высочайшей электропроводности и стойкости к окислению применяется:
- в электротехнике и электронике как покрытие ответственных контактов
- в СВЧ технике как покрытие внутренней поверхности волноводов
Области применения серебра постоянно расширяются и его применение — это не только сплавы, но и химические соединения. Определённое количество серебра постоянно расходуется для производства серебряно-цинковых и серебряно-кадмиевых аккумуляторных батарей, обладающих очень высокой энергоплотностью и массовой энергоёмкостью и способных при малом внутреннем сопротивлении выдавать в нагрузку очень большие токи. Серебро используется в качестве добавки (0,1—0,4 %) к свинцу для отливки токоотводов положительных пластин специальных свинцовых аккумуляторов (очень большой срок службы (до 10—12 лет) и малое внутреннее сопротивление). Хлорид серебра используется в хлор-серебряно-цинковых батареях, а также для покрытий некоторых радарных поверхностей. Кроме того, хлорид серебра, прозрачный в инфракрасной области спектра, используется в инфракрасной оптике. Монокристаллы фторида серебра используются для генерации лазерного излучения с длиной волны 0,193 мкм (ультрафиолетовое излучение).
Серебро используется в качестве катализатора в фильтрах противогазов.
Ацетиленид серебра (карбид) изредка применяется как мощное инициирующее взрывчатое вещество (детонаторы).
Фосфат серебра используется для варки специального стекла, используемого для дозиметрии излучений. Примерный состав такого стекла: фосфат алюминия — 42 %, фосфат бария — 25 %, фосфат калия — 25 %, фосфат серебра — 8 %.
Перманганат серебра, кристаллический тёмно-фиолетовый порошок, растворимый в воде; используется в противогазах. В некоторых специальных случаях серебро так же используется в сухих гальванических элементах следующих систем: хлор-серебряный элемент, бром-серебряный элемент, йод-серебряный элемент.
Серебро зарегистрировано в качестве пищевой добавки Е174.
В медицине
Одной из важных сфер использования серебра являлась алхимия, тесно связанная с медициной. Уже за 3 тыс. лет до н. э. в Китае, Персии и Египте были известны лечебные свойства самородного серебра. Древние египтяне, например, прикладывали серебряную пластину к ранам, добиваясь их быстрого заживления. О способности этого металла долгое время сохранять воду пригодной для питья также знали с древних времен. Например, персидский царь Кир в военных походах перевозил воду только в серебряных сосудах. Знаменитый средневековый врач Парацельс лечил некоторые болезни «лунным» камнем — азотнокислым серебром (ляпис). Этим средством в медицине пользуются и поныне.
Мелкораздробленное серебро широко применяется для обеззараживания воды. Вода, настоянная на порошке серебра (как правило, применяют посеребренный песок) или профильтрованная через такой песок, почти полностью обеззараживается. Серебро в виде ионов активно взаимодействует с различными другими ионами и молекулами. Малые концентрации полезны, так как серебро уничтожает многие болезнетворные бактерии. Установлено также, что ионы серебра в малых концентрациях способствуют повышению общей сопротивляемости организма к инфекционным заболеваниям [источник не указан 203 дня] . Развивая это направление использования, в довершение к зубным пастам, защитным карандашам, керамическим плиткам, покрытым серебром, в Японии даже стали изготавливать ладан, который содержит ионизированное серебро и при сжигании высвобождает ионы, убивающие бактерии. На этом свойстве серебра основано действие таких лекарственных препаратов, как протаргол, колларгол и др., представляющих собой коллоидные формы серебра и способствующих излечению гнойных поражений глаз.
Давно известно что если к серебряным электродам приложить напряжение в несколько вольт, то их обеззараживающее действие заметно усиливается (данный эффект использовался в портативных бытовых приборах для обеззараживания воды). Значительное усиление эффекта наблюдается если на поверхности электродов выращивать серебряные наностолбики. При этом напряжение не обязательно прикладывать непосредственно к электродам, а можно создавать внешним полем.
Ещё более эффективно действует слабый раствор комплексного соединения серебра с аммиаком, применяющийся в медицине под названием аммарген (производное от слов «аммиак» и «аргентум»). Нитраты серебра в виде раствора аммаргена широко применяются для промывания ран или слизистой оболочки при различных воспалительных состояниях, а также используются в изготовлении различных антибактериальных средств.
Физиологическое действие
Обычно серебро поступает в организм с водой и пищей в ничтожно малых количествах — всего 7 микрограммов в сутки. И при этом такое явление, как дефицит серебра, пока нигде не описано. Ни один из серьёзных научных источников не относит серебро к жизненно важным биоэлементам. Серебро — это тяжёлый металл. Пить воду с ионами серебра не стоит.
Подобная позицией характеризуется медицинское сообщество всего мира (за исключением Индии).
Добыча серебра
Предполагается, что первые месторождения серебра находились в Сирии в (5000-3400 гг. до н. э.), откуда металл привозили в Египет.
В VI—V веках н. э. центр добычи серебра переместился в Лаврийские рудники в Греции.
C IV по середину I века до н. э. лидером по производству серебра были Испания и Карфаген.
Во II—XIII вв. действовало множество рудников по всей Европе, которые постепенно истощались.
В XV—XVI вв. на первый план выходят Рудные горы.
Освоение Америки привело к открытию богатейших месторождений серебра в Кордильерах. Главным источником становится Мексика, где в 1521—1945 гг. было добыто около 205 тыс. т металла — около трети всей добычи за этот период. В крупнейшем месторождении Южной Америки — Потоси — за период с 1556 по 1783 год добыто серебра на 820513893 песо и 6 «прочных реалов» (последний в 1732 году равнялся 85 мараведи).
В России первое серебро было добыто 1704 году на Нерчинских рудниках Забайкалья. Некоторое количество добывалось на Алтае. Лишь в середине XX века освоены многочисленные месторождения на Дальнем Востоке.
В 2008 году всего добыто 20 900 т серебра. Лидером добычи является Перу (3 600 т), далее следуют Мексика (3 000 т), Китай (2 600 т), Чили (2 000 т), Австралия (1 800 т), Польша (1 300 т), США (1 120 т), Канада (800 т).
На 2008 год, лидером добычи серебра в России является компания Полиметалл, добывшая в 2008 году 535 т [5] .
ИсточникСеребро химический элемент — основные свойства, месторождения и способы получения металла
Многих людей интересует серебро — химический элемент, который ассоциируется с роскошью, дорогими изделиями, уникальными технологиями в науке и технике. Этот элемент занимает особое место во всей таблице Менделеева, так как всегда, буквально во всей известной человечеству истории, он был материалом для изготовления монет, уникальных предметов быта и прочих ценных вещей. Серебряные монеты известны еще в самых древних цивилизациях, и они продолжают выпускаться в наше время.
Также материал играет важную роль в науке, медицине, промышленности, уникальных технологиях, где выставляются серьезные требования к чистоте используемых веществ. Многих людей интересует не столько химия серебра, как различные связанные с ним поверья, легенды и сказки. Это также занимает большой пласт общечеловеческой культуры и показывает важность рассматриваемого элемента для людей.
История металла
Такое вещество, как серебро, известно человечеству уже очень много тысячелетий, если не сотен тысяч лет. В самых древних мифах, сказаниях и повестях можно встретить упоминания о сделанных из него деньгах и предметах. Свое название материал получил от праславянского наречия, которое было распространено на территории нынешней России, Германии и балтийских стран.
В буквальном переводе оно означает «блестящий», «белый до блеска».
Причина такой ранней известности вещества во многих культурах состоит в том, что в отличие от других металлов, которые добывают путем переплавки, руда рассматриваемого материала не требует этой процедуры. Очень часто серебро встречалось древним людям в виде уже готовых к обработке самородков. То есть, не нужны были никакие сложные технологии, чтобы просто брать его и активно использовать в своих целях.
Происхождение названия
Если говорить о названии более подробно, то здесь не все так просто, как было упомянуто выше. Не только в праславянском наречии было слово, похожее на современное «серебро». Открытие специалистов показало, что похожие слова есть в анатолийской группе языков, в языках, распространенных на Ближнем Востоке, а также доиндоевропейских языках стран Европы.
Степень принадлежности слова к той или иной культуре установить очень сложно, если вообще возможно. Существует также и греческое слово, обозначающее серебро árgyros, откуда пошло латинское argentum, принятое международным сообществом в качестве основного названия в международной системе и таблице Менделеева.
Нахождение в природе
Если рассматривать состав земной коры, то в ней на серебра примерно 70 миллиграмм на 1 тонну. Это не так много. С древних времен серебреные монеты и предметы имели высокую ценность, что уже указывает на то, что материал является редким и ценным.
Сплавы материала встречаются реже, нежели чистая руда, но при нынешнем развитии технологий легко обрабатываются с целью выделения необходимой фракции.
Интересно отметить, что нередко копателям удавалось обнаружить не руду, а самородки, при этом огромного размера. Истории известен случай, когда был найдет самородок серебра на целых 20 тонн веса! Также находили и другие самородные объекты весом в 500-600 килограммов.
Крупнейшие месторождения серебра в мире
Распределение драгоценного ресурса по поверхности планеты крайне неравномерно. Наиболее интенсивно добыча материала происходит в Перу – это государство является безусловным лидером по количеству получаемого здесь серебра. В среднем, за один год в этой стране добывается около 110 миллионов унций вещества.
Польша является также одним из лидеров по добыче серебра, хотя мало кто догадывается об этом. Здесь добывается около 40,5 миллионов унций серебра.
Россия и постсоветские страны имеют около 12-15% от мировых запасов серебра. Горнодобывающая промышленность здесь достаточно развита и дает тонны материала ежегодно. Австралия также входит в перечень счастливчиков, которым повезло с рассматриваемым ресурсом. В остальных частях мира серебра не так много, но всегда есть вероятность обнаружить его пока неизвестные месторождения.
Физические свойства
Масса вещества достаточно высока, что обуславливается тем, что его плотность равна целых 10,5 г/см³. Это больше, чем у другого популярного металла – меди, но меньше, нежели у известного каждому свинца.
Плавление серебра начинается при температуре 962°C, что является достаточно высоким значением. Именно поэтому металл считается тугоплавким и используется, к примеру, для пайки сложных соединений в качестве припоя.
В комнатных условиях вещество имеет высокий уровень электропроводности, также отличается высокой теплопроводностью. Оксид, хлорид, сульфид, гидроксид серебра активно используются в научной деятельности и промышленности для решения целого спектра задач.
Химические свойства
Максимальная валентность рассматриваемого металла составляет 1, так как она соответствует номеру группы, где он находится в таблице Менделеева. Ионы серебра слабо реагируют на другие элементы, включая даже серную и соляную кислоту.
Молярная масса равна 107,8 а.е.м. (вес атома такой же), цвет тонкой фольги с чистого материала напоминает фиолетовый, если же берется самородок, то он ярко-светлый, серебристый.
Окисление вещества происходит крайне слабо и только в специальных условиях. Для этого приходится использовать плазменные технологии, озон или обработку ультрафиолетовым излучением. Электронная конфигурация серебра выглядит так: 4d^10 5s^1. Кристаллическая решетка – кубическая, а если быть более точным — кубическая гранецентрированная.
Сфера применения серебра
Существует масса применений рассматриваемого материала, благодаря чему он и имеет столь высокую стоимость и авторитет среди самых широких масс людей.
Вот основные случаи его использования:
Техническое применение в науке и промышленности. Надежные контакты для электрического соединения обрабатываются серебром. Так как материал плавится при очень высокой температуре, почти 1000 градусов, то его применяют везде, где важно выдерживать высокотемпературную среду.
Удельный вес вещества позволяет использовать его в составе различных припоев, к примеру, большой популярностью пользуется медно-серебряный припой.
Используется среди драгоценных металлов в области создания ювелирных изделий.
Также металл применяется для создания высококачественных зеркал с повышенной отражающей способностью, в СВЧ-электротехнике.
Серебро известно своими дезинфицирующими свойствами, поэтому используется для очищения воды от микробов.
В химии существует не одна формула применения серебра для науки, химической промышленности и массы других задач. С его помощью проводятся всевозможные пробы, делаются качественные сварные швы, создается сложная электроника.
Заключение
Argentum – известнейший во всем мире химический элемент, который активно используется в огромном количестве случаев. Значение серебра для современной цивилизации сложно переоценить – во многих сферах деятельности оно буквально незаменимо.
Получение металла из земной породы в наше время поставлено на крупный поток, поэтому человечество получает тонны драгоценного материала для своих нужд ежегодно.
ИсточникСеребро
Серебро́ — элемент побочной подгруппы первой группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 47. Обозначается символом Ag (лат. Argentum). Простое вещество серебро (CAS-номер: 7440-22-4) — ковкий, пластичный благородный металл серебристо-белого цвета. Кристаллическая решётка — гранецентрированная кубическая. Температура плавления — 960 °C, плотность — 10,5 г/см³.
История
Серебро известно человечеству с древнейших времён. Это связано с тем, что в своё время серебро, равно как и золото, часто встречалось в самородном виде — его не приходилось выплавлять из руд. Это предопределило довольно значительную роль серебра в культурных традициях различных народов. В Ассирии и Вавилоне серебро считалось священным металлом и являлось символом Луны. В Средние века серебро и его соединения были очень популярны среди алхимиков. С середины XIII века серебро становится традиционным материалом для изготовления посуды. Кроме того, серебро и по сей день используется для чеканки монет.
Происхождение названия
Достаточно очевидно, что рус. серебро, польск. srebro, болг. сребро, ст.-слав. сьребро восходят к праславянскому *sьrebro, которое имеет соответствия в балтийских (лит. sidabras, др.-прусск. sirablan) и германских (готск. silubr, нем. Silber, англ. silver) языках. Дальнейшая этимология за пределами германо-балто-славянского круга языков неясна, предполагают либо сближение с анатолийским subau-ro «блестящий», либо раннее заимствование из языков Ближнего Востока: ср. аккад. sarpu «очищенное серебро», от аккад. sarapu «очищать, выплавлять». По-гречески серебро — «ἄργυρος», «árgyros», от индоевропейского корня «*H2erǵó-, *H2erǵí-», означающего «белый», «блистающий». Отсюда происходит и его латинское название — «argentum».
Физические свойства
Чистое серебро — довольно тяжёлый (легче свинца, но тяжелее меди), необычайно пластичный серебристо-белый металл (коэффициент отражения света близок к 100 %). Тонкая серебряная фольга в проходящем свете имеет фиолетовый цвет. C течением времени металл тускнеет, реагируя с содержащимися в воздухе следами сероводорода и образуя налёт сульфида. Обладает высокой теплопроводностью. При комнатной температуре имеет самую высокую электропроводность среди всех известных металлов.
ИсточникСеребро
Серебро – химический элемент, благородный металл, известный с древнейших времен, распространен в природе гораздо меньше, чем медь. Серебряные наночастицы применяют в растениеводстве в качестве биологически активных веществ, стимулирующих рост и развитие растений.
серебряный кристалл
Чистый (>99.95%) искусственный серебряный кристалл, полученный путем электролиза с видимой дендритной структурой.
Латинское название – Argentum – дано этому металлу в связи с его цветом и является производным от греческого «аргос», то есть «белый, блестящий». Русское название «серебро» происходит от слова «серп» и связано непосредственно с луной (серп луны). Блеск самородков серебра, окрашенных в светло-желтый цвет, похож на сияние ночного светила. Более того, в алхимии в качестве символа серебра используется знак луны.
Наиболее древние ювелирные серебряные изделия были обнаружены в захоронениях, относящихся ко второй эпохе Герзе, то есть 3900 – 3600 лет до нашей эры.
Серебряные самородки находят очень редко, гораздо реже золотых. Именно поэтомудо конца I тысячелетия до нашей эры серебро ценилось выше золота. Ситуацию изменило открытие способа выделения чистого серебра из свинцовых руд.
Благодаря ковкости и пластичности серебро широко применяется в ювелирном деле во всех странах мира. Высокая электро- и теплопроводность сделала этот материал незаменимым в технике. Химические соединения серебра разлагаются на свету, что используется в фотографии.
Современные исследования подтверждают широкий спектр противомикробного действия серебра, отмечают отсутствие устойчивости к нему у многих патогенных организмов, низкую токсичность и гипоаллергенность. Благодаря этим свойствам материал широко используется при создании медицинских препаратов антисептического, противовоспалительного и бактерицидного действия.
В последнее десятилетие активно изучается действие наночастиц серебра на рост и развитие растений. Многочисленные исследования подтверждают положительное воздействие элемента на ростовые процессы.
Руда серебра
Физические и химические свойства
Серебро(Argentum) Ag– химический элемент побочной подгруппы первой группы периодической системы. Характеризуется ярко выраженным физиологическим воздействием на живые организмы, устойчивостью к воздействию кислорода воздуха в нормальных условиях. Атомный номер – 47. Атомная масса – 107,87.Плотность – 10,49 г/см3. Температура плавления – 960, 5°C. Температура кипения – 2210°C.
Серебро – белый, блестящий металл, в тонких пленках и проходящем свете – голубого цвета. На открытом воздухе, под действием сероводорода, серебро окисляется, покрываясь темным налетом сульфида серебра. Характеризуется наивысшей электро- и теплопроводностью среди прочих металлов периодической системы и лучшей отражательной способностью, в частности в инфракрасном и видимом свете. Растворимость серебра в воде – 0,04 мкг/л. В водных растворах ионы серебра образуют долго сохраняющие стабильность гидратированные ионы.
При повышении температуры и давления на поверхности серебра образуется одновалентный оксид серебра (Ag2O). Суспензия этого соединения обладает антисептическими свойствами. При температуре 200°CAg2 Oразлагается. Кроме указанного, устойчивым является и двухвалентный оксид серебра – AgO.
Серебро проявляет устойчивость к воздействию кислот. Разбавленная серная, соляная кислота и смесь концентрированной азотной и соляной кислот (царская водка) на него действия не оказывают в связи с образованием на поверхности металла защитной пленки из хлорида серебра (AgCl).
Хлорид серебра (AgCl) образуется в виде белого творожистого осадка нерастворимого в воде и кислотах при взаимодействии серебра с хлорид-ионами. На свету он постепенно темненнт и разлагается с выделением металлического серебра. Такими же свойствами обладают йодид и бромид серебра, но они имеют желтоватый цвет. Фторид серебра в воде растворяется.
Горячая концентрированная серная кислота (H2SO4) способна растворять серебро, образуя сульфат серебра(Ag2SO4).
Азотная кислота (HNO3) растворяет серебро с образованием нитрата серебра (ляпис)–AgNO3.Это бесцветные кристаллы хорошо растворимые в воде. Применяется ляпис в производстве фотоматериалов, в гальванотехнике, в медицине и растениеводстве.
Химические соединения серебра термодинамически малоустойчивы. При этом углерод-и азотосодержащие соединения одновалентного серебра разлагаются со взрывом.
Ag (95 – 98%) спримесьюAu, Hg,Sb,Bi, Cu, As,Pl
серебряно-белый часто с темным налетом
светло-желтый до серебряно-белого и зеленоватого
свинцово-серый до железно-черного
серая со слабым блеском
ярко-красный (цвет киновари), темнеет
кирпичная до ярко-красной
черный до темно-серого
смоляной до матового, у кристаллов алмазный
серый, бесцветный, с бурым (зеленым) оттенком, на свету темнеет до черного
сероватый до железно-черного
полуметаллический до алмазного
железно-черный до стально-серого в тонких осколках кроваво-красный
металлический, алмазовидный, матовый
железно-черный, в очень тонких осколках темно-красный
Физические свойства важнейших минералов серебра
Содержание в природе
Серебро – редкий металл, по среднему содержанию в земной коре находится на 69 месте среди остальных элементов периодической системы.
- в гранитах – 0,037х10 -4 ;
- в гранитоидах – 0,050х10 -4 ;
- в липаритах – 0,049х10 -4 ;
- андезитах – 0,080х10 -4 ;
- базальтах – 0,110х10 -4 ;
- габбро – 0,110х10 -4 ;
- ультроосновных породах – 0,600х10 -4 ;
- в среднем для пород Японии – 0,08 х10 -4 .
- в магматических:
ультраосновных – 0,05х10 -4 ;
основных – 0,1х10 -4 ;
средних – 0,07х10 -4 ;
кислых – 0,05х10 -4 ;
в глинах, сланцах – 0,1х10 -4 ;
песчаниках – 0,44х10 -4 ;
карбонатных – 0,02х10 -4 ;
- в среднем по литосфере – 0,07х10 -4 ;
- в метеоритах-хондритах – 0,094х10 54 ;
- в железных метеоритах – 5х10 -4 .
Содержание серебра в различных соединениях
В настоящее время большую часть серебра получают из его соединений. Самая важная серебряная руда – аргенит (серебряный блеск). Одновременно в качестве примеси серебро обнаруживается во всех медных и свинцовых рудах. Именно из них получают до 80% всего добываемого серебра. В России этот металл добывают из серебряно-свинцовых руд Урала, Алтая, Северного Кавказа.
Известно более 60 серебосодержащих минералов, которые делятся на 6 групп:
самородное серебро, содержит 95 – 99% серебра с примесью золота, платины, меди и других металлов;
сплавы серебра золотом (электрум) – 20 – 28 % серебра;
простые сульфиды серебра (аргентит) – 87 % серебра;
теллуриды и селениды серебра – гессит (63%), науманит (73%);
антемониды и арсениды – дискразит (до 74%);
галогениды и сульфаты – кераргирит (75%);
сложные сульфиды (тиосоли) – пираргирит(60%), прустит (65%).
Содержание серебра в почвах
Коллоидное серебро
Чистое серебро малорастворимо в воде. Ядовитость растворимых соединений серебра – факт общеизвестный. Тогда как все типы наночастиц серебра характеризуются низкой или нулевой токсичностью.
Проблему снабжения животных и растительных организмов необходимой дозой серебра в настоящее время решают с помощью коллоидных систем, содержащих наночастицы серебра. Данные о действии коллоидных наночастиц серебра на живые организмы, в том числе и растения весьма противоречивы. В целом это связано с недостаточной изученностью вопроса. Однако, в целом наука склоняется к положительному влиянию минимальных доз серебра на рост и развитие растений и животных, как и других микроэлементов.
Коллоидная система
Любая коллоидная система состоит из сверхмалых частиц находящихся во взвешенном состоянии в той или иной среде, например воде. Размер частиц в коллоиде составляет от 0,1 до 0,00 1 микрона. При размерах частиц менее 0,1 микрона – система будет представлять собой истинный раствор,при размерах более 100 нм –суспензию.
Коллоидная система обладает тремя свойствами:
- Состоит из разнородных компонентов.
- Является многофазной.
- Частицы не растворяются в растворе или суспензии.
Физико-химические свойства коллоидного серебра
Физико-химические свойства коллоидных наночастиц серебра определяютсяих агрегативной и седиментационной(способностью противостоять силе тяжести) устойчивостью, а также возможностью их окисления кислородом окружающего воздуха.
Устойчивость коллоидной системы в данном случае зависит от исходной концентрации ионов серебра в растворе.
Размеры наночастиц серебра варьируют в пределах от 3 до 100 нм. Физические свойства серебра в нанодиапазоне отличаются от свойств серебра. Например, уменьшение размеров частиц приводит к снижению температуры плавления.
Наночастицы серебра обладают большой удельной площадью поверхности, что увеличивает область контакта элемента с патогенными организмами и улучшает его бактерицидное действие. Одновременно увеличивается скорость адсорбции клеткой и транспортировка через клеточную мембрану.
Биологические эффекты наночастиц серебра
Горчица сарепская(Brassica juncea)– при проращивании семянна базальной питательной среде при использовании наночастиц серебра установлен положительный эффект, выражающийся в увеличении длинны, диаметра, числа листьев и побегов, а так же в повышение урожайности.
Рапс(Brassica napus) – привоздействии наночастицами серебра на ранних стадиях онтогенеза существенно наращивает массу корней и стеблей. Одновременно отмечается снижение энергии прорастания и всхожести семян.
Босвелия(Boswellia ovalifoliolata) – обработка семянускоряется прорастание и рост саженцев.
Спаржа лекарственная(Asparagus officinalis) – обработка семян ускоряется их прорастание и дальнейшее развитие растений. Одновременно отмечается повышение содержания аскорбиновой кислоты и хлорофилла в обработанных проростках.
Боб садовый(Vicia faba) – при добавлении в питательную средунаночастиц серебра отмечается снижение всхожести, замедление образования клубеньков (уменьшается численность бактерий симбиотов Rhizobium leguminosarum), замедление роста побегов, уменьшение длины корней.
Томаты(Solanum lycopersicum) – при добавлении в гидропонную среду наночастиц серебра всхожести не снижают, но уменьшают длину побегов и корней. Отмечается снижение активности фотосинтеза.
Редька посевная(Raphanus sativus) – при выращивании на гидропонной среде с добавлением наночастиц серебра всхожесть семян остается неизменной, длина корней и побегов уменьшается, снижается активность фотосинтеза.
Латук посевной(Lactucasativa) – отрицательное воздействие не наблюдается. Содержание серебра в съедобных частях растений составляет менее 1% от общего количества, внесенного в почву.
Знак влияния наночастиц на растения может зависеть от дозы внесения. При проращивании семян Риса посевного (Oryza sativa)на среде содержащей наночастиц серебра 30 мг/мл рост корней усиливается. При повышении концентрации до 60 мг/ мл проростки замедляли рост по сравнению с контролем. Одновременн, при увеличении дозы, отмечается уменьшение численности ризосферных организмов, поскольку бактериальные клеточные стенки повреждаются наночастицами серебра.
Подавление роста в зависимости от дозы и времени воздействия наблюдается у Ряски малой(Lemma minor), а прибольших концентрациях проявляются признаки окислительного стресса и изменения в структуре хлоропластов.
Фасоль золотистая(Phaseolusradiates) и Сорго зерновое (Sorghum bicolor)показывают большее подавление роста при выращивании на питательной среде с добавлением наночастиц серебра, чем на почве с аналогичными добавками.
Проведенные исследования на Многокореннике обыкновенном (Spirodela polyrhiza)по влиянию размеров наночастиц на токсические эффекты показали, что мелкие ( 6 нм) наночастицы более токсичны, чем крупные ( 20 – 100 нм).
Ячмень при обработке семяннаносеребром увеличивает длину корней проростков. Салат – уменьшает.
Влияние наночастиц серебра на морфологическое и физиологическое состояние растений зависит от их вида и формы. В частности, десятигранные наночастицы серебра значительно влияют на удлинение корней Резуховидки (Arabidopsis). Одновременно наночастицы сферической формы не оказывают на рост корней никакого эффекта.
В публикациях часто обнаруживаются противоречивые, часто противоположные данные о влиянии наночастиц серебра на растения. Это объясняется различиями в условиях экспериментов и недостаточнойизученностью вопроса, поскольку активные исследования влияния наночастиц серебра на растения ведутся не более 10 лет.
Источник