Синтетический кристалл что это

Искусственные и природные кристаллы, выращивание камней

Синтетические кристаллы

кристаллы, выращенные искусственно в лабораторных или заводских условиях. Из общего числа С. к. около 10 4 относятся к неорганическим веществам. Некоторые из них не встречаются в природе. Однако первое место занимают органические С. к., насчитывающие сотни тысяч разнообразных составов и вообще не встречающиеся в природе. С другой стороны, из 3000 кристаллов, составляющих многообразие природных Минералов, искусственно удаётся выращивать только несколько сотен, из которых для практического применения существенное значение имеют только 20—30 (см. табл.). Объясняется это сложностью процессов кристаллизации (См. Кристаллизация) и техническими трудностями, связанными с необходимостью точного соблюдения режима выращивания Монокристаллов.

Первые попытки синтеза кристаллов, относящиеся к 16—17 вв., состояли в перекристаллизации воднорастворимых кристаллических веществ, встречающихся в виде кристаллов в природе (Сульфаты, галогениды). После расшифровки состава природных минералов появились попытки синтеза минералов из порошков с использованием техники обжига. Этим методом были получены мелкие С. к. В начале 20 в. синтезом кристаллов занимались Е. С. Федоров (См. Фёдоров) и Г. В. Вульф, которые исследовали условия кристаллизации воднорастворимых соединений и усовершенствовали аппаратуру. В дальнейшем А. В. Шубников разработал общие принципы образования кристаллов из водных растворов [сегнетова соль, дигидрофосфат калия и др., см. рис. 1, 3, 4] и из расплавов (однокомпонентных и многокомпонентных систем), под его руководством была создана первая фабрика С. к.

Кристаллы, соль, синтетика — знакомо? Триггерит? Альфа пвп — наркотик обманывающий мозг.

С. к. кварца получают в гидротермальных условиях. Маленькие «затравочные» кристаллы различных кристаллографических направлений вырезаются из природных кристаллов кварца. Хотя Кварц широко распространён в природе, однако его природные запасы не покрывают нужд техники, кроме того, природный кварц содержит много примесей. С. к. кварца массой до 15 кг выращивают в автоклавах в течение многих месяцев, а особо чистые кристаллы (оптический кварц) растут несколько лет (рис. 5, 6).

Мир геометрически правильных кристаллов связан в сознании людей с миром драгоценных (См. Драгоценные и поделочные камни) и поделочных камней (См. Поделочные камни). Поэтому усилия многих учёных были направлены на синтез алмаза, рубина, аквамарина, сапфира и др. В начале века были получены С. к. Рубина из растворов в расплавах поташа и соды в виде кристалликов темно-малинового цвета. Позже (в конце 19 в.) французский учёный Вернейль изобрёл специальный аппарат для получения С. к. рубина, который в дальнейшем был усовершенствован. Порошок Al2O3 с добавкой нескольких % Cr2O3 непрерывно поступает в зону печи, где происходит горение водорода в кислороде. Капли расплавленной массы попадают затем на более холодный участок затравки и тотчас же кристаллизуются. В СССР работают аппараты системы С. К. Попова, которые позволяют получать С. к. рубина в виде стержней диаметром от 20 до 40 мм и Длина до 2 м — для Лазеров, нитеводителей, а также для стекол космических приборов. Большую долю С. к. рубина потребляет часовая промышленность, но основным потребителем синтетического рубина является ювелирная промышленность. Добавка к Al2O3 примесей солей Ti, Со, Ni и других позволяет получить С. к. различной окраски, имитирующие окраску Сапфиров, Топазов, Аквамаринов (рис. 7, 8) и других природных драгоценных камней.

С. к. Алмаза были получены в 50-х гг. из порошка графита, смешанного с Ni. Смесь прессуется в виде небольших (2—3 см) дисков, которые затем нагреваются до температуры 2000—3000 °С при давлении в 100—200 тыс. am. В этих условиях графит превращается в алмаз. Величина С. к. алмаза порядка десятых долей мм. В особых условиях удаётся получить С. к. алмаза до 2—3 мм. В СССР создана алмазная промышленность для нужд главным образом буровой техники. С. к. алмазов, конкурирующие с природными ювелирными образцами, пока получены в небольших количествах.

Начиная с 50-х гг. развивается промышленность органических С. к. — Нафталина, Стильбена, толана, Антрацена и др., применяющихся в сцинтилляционных устройствах (см., например, Сцинтилляционный счётчик). Синтез этих кристаллов осуществляется в основном методом Чохральского. По размерам эти С. к. соперничают с крупными неорганическими (воднорастворимыми) кристаллами. Наиболее применяемые полупроводниковые кристаллы (Ge, Si, Ga, As и др.) в природе не встречаются. Все они выращиваются из расплавов в виде цилиндров диаметром от 10 до 20 см и Длина 30—50 см.

Читайте также:
Сколько стоит большой набор

В лабораторных условиях из растворов расплавов выращивают С. к. феррогранатов и Изумрудов. Однако промышленного развития эти методы ещё не получили. Развиваются исследования, связанные с промышленным выпуском синтетических драгоценных камней на основе алюмоиттриевых гранатов (гранатиты) (рис. 2а, 2б) и двуокисей циркония и гафния (фианиты). Это — С. к. с окраски, имитирующие изумруды, топазы и алмазы за счёт большого широкой гаммой преломления света.

Лит.: Федоров Е. С., Процесс кристаллизации, «Природа», 1915, декабрь; Вульф Г. В., Кристаллы, их образование, вид и строение, М., 1917; Шубников А. В., Как растут кристаллы, М. — Л., 1935; Аншелес О. М., Татарский В. Б., Штернберг А. А., Скоростное выращивание однородных кристаллов из растворов, [Л.], 1945; Попов С. К., Новый производственный метод выращивания кристаллов корунда, «Изв. АН СССР. Серия физическая», 1946, т. 10,№5—6; Штернберг А. А., Кристаллы в природе и технике, М., 1961; Условия роста и реальная структура кварца, в кн.: IV Всесоюзное совещание по росту кристаллов, Ер., 1972, ч. 2, с. 186; Мильвидский М. Г., Освенский В. Б., Получение совершенных монокристаллов полупроводников при кристаллизации из расплава, там же, ч. 2, с. 50; Багдасаров Х. С., Проблемы синтеза крупных тугоплавких оптических монокристаллов, там же, ч. 2, с. 6; Тимофеева В. А., Дохновский И. Б., Выращивание иттриево-железистых гранатов из растворов — расплавов на точечных затравках в динамическом режиме, «Кристаллография», 1971, т. 16, в. 3, с. 616; Яковлев Ю. М., Генделев С. Ш., Монокристаллы ферритов в радиоэлектронике, М., 1975.

Как вы уже поняли синтетические алмазы – это выращенные человеком кристаллы, которые создаются из того же углерода, что и натуральные. Эти камни имеют аналогичную природным самоцветам структуру, состав и физические свойства. Однако есть еще одна группа камней, с прекрасным названием “бриллиантовые аналоги”.

Природные кристаллы

Природные крситаллы. Топаз Природные кристаллы. Берилл Природные кристаллы. Берилл Природные кристаллы. Морион Природные кристаллы. Топаз Природные кристаллы. Морион Природные кристаллы. Аметист

Природные кристаллы

Среди различных горных пород встречаются кристаллические (обычно магматические и вулканические породы) и некристаллические (обычно осадочного происхождения). Особый интерес представляют кристаллические горные породы (или природные кристаллы), о которых и пойдёт речь.

Среди выставленных в магазинах на показ драгоценных и полудрагоценных камней (представленных в виде природных кристаллов или осадочных пород) у некоторых из них имеется табличка "натуральный камень". Это означает, что такие камни найдены в природе, обработаны и выставлены на продажу. А что тогда представляют остальные камни без табличек? Это минералы и камни выращены на заводе! (или искусственные кристаллы). Можно выращивать аметисты, цитрины, морионы, которые не будут уступать естественным минералам. Но вот себестоимость таких минералов и камней будет гораздо ниже! (конечно это относится не ко всем минералам, выращиваемым искусственным путём)

Выращивание искусственных кристаллов интересовало людей ещё в IX веке. И прежде всего интерес представляли драгоценные минералы: рубин и сапфир. Сейчас такие минералы производятся миллионами карат ежегодно!

Искусственные кристаллы камней производят из расплавов, из растворов, из газа, но конечно, для каждого минерала существует свой способ получения, своя технологическая особенность. (С этой особенностью связано такое разнообразие минералов в природе!). Например, кристаллы кварца (горный хрусталь, аметист, морион) растут в водных растворах природных минерализаторов. Об этом свидетельствует химический состав кварца. Для выращивания искусственного кристалла камня природные условия моделируются также искусственно!

Интересен вопрос о скорости роста. Здесь нет однозначного ответа. Скорость роста искусственных кристаллов камней зависит от условий роста, глубине залегания породы и давления, концентрации природного раствора, какие породы окружают растущий кристалл и многое другое. Если учесть то, что в самом среднем случае рост минералов может происходить годами и веками, то создавая искусственные условия выращивания кристаллов камней, получили почти "космическую" скорость — сравнимую со скоростью роста волос у человека! Если кратко описать процесс искусственного выращивания кристаллов камней, то исходное сырьё (например некрасивый, разрушенный кварц) разрушается в щелочи до молекулярного состояния и затем из молекул кремнезёма (SiO2) создаётся идеально правильный прозрачный кристалл. Делается это с помощью специальных затравок. Затравки для выращивания искусственных минералов — прозрачные тонкие вытянутые в длину пластинки, изготавливаемые из тех же синтетических кристаллов. При этом обязательно контролируется соответствующая температура, давление, концентрация раствора. Малейшие отклонения от заданных параметров — и кристалл будет безнадёжно испорчен! Ещё одним важным условием выращивания искусственных камней — это перепад температур внизу и вверху ёмкости где они растут. При этом происходит перенос молекул в растворе и поступление их к затравкам.

Читайте также:
Сколько примерно грамм золота в обычном обручальном кольце

Искусственные кристаллы аметистов

Искусственные драгоценные и полудрагоценные камни, например, аметисты, выращенные на заводе, ничем не отличаются от своих знаменитых уральских и бразильских собратьев: ни внешне, ни по структуре.

Удивляет не богатство разновидностей кристаллов, их цветовых оттенков, а сам размер! такие драгоценности увидишь не часто! Лимонно-жёлтый цитрин, нежно-голубой и ярко-синий перунит, фиолетовый аметист, дымчатый раухтопаз, почти чёрный морион, голубая бирюза, аквамариновые бериллы, янтарно-коричневый топаз, — смотришь и не можешь наглядеться!

Ещё в древности камням приписывали самые удивительные свойства. Аметист с давних времён считался амулетом против опьянения и отравления, отгонял от владельцев дурные мысли, делал человека добрым и разумным. Женщины особенно ценили его как средство от морщин и веснушек. В средние века аметист дарили только любимым. Аметист носят те, кто родился в феврале.

Известность аметиста объясняется его фиолетовым цветом разной густоты и оттенков. Долго не могли понять природу окраски камня. Сначала предполагали, что эту окраску придаёт камню марганец. Но воспроизвести искусственным путём — не получалось. Позже стало известно, что аметистовая окраска кварца (а аметист — это кварц) вызвана наличием ионов четырёхвалентного железа. Эти ионы входят в кристаллическую решётку и замещают в ней кремний.

В ходе экспериментов обнаружено то, что если ионы железа займут иное положение, то получится другая окраска кристалла. Многое зависит от концентрации раствора, в котором растут искусственные кристаллы. Слабее концентрация — примеси железа окрашивают кварц в бурый цвет, сильнее концентрация — цвет становится зелёным. Цветом можно играть и выбирать самые выразительные оттенки!

Но технология окрашенного кварца не получила распространения. Во-первых, соли металлов, входящих в природный минерал, не "хотели" растворяться в щелочах; во-вторых, растущие кристаллы "стремились отторгнуть от себя" примеси (то есть все цветовые добавки). Именно поэтому во многих странах технология выращивания искусственных кристаллов камней так и не налажена.

Разработаны новые методы и сегодня известны 2 технологии. Аметисты выращивают кристаллизацией из раствора в автоклавах. Технологический цикл роста длится 2 месяца. Аметисты получаются совершенно бесцветными и почти ничем не отличаются от самого обычного кварца. Для проявления окраски выращенные искусственные аметисты подвергают гамма или рентгеновскому облучению (все естественные горные породы облучались, благодаря радиоактивным вкраплениям). Кстати, месторождения природных кристаллов аметистов расположены в тех зонах, где имеется повышенный уровень радиоактивности.

Цена аметистов в значительной степени зависит от цвета камня. Бледно-лиловые или светло-фиолетовые минералы обычно в десятки раз дешевле, чем густо-фиолетовый. Минералы, выращенные на заводе имеют густой фиолетовый цвет.

Удивительно, что в одних и тех же условиях получают разные минералы — и аметисты, и цитрины. Вот, где рождаются россыпи самоцветов! Всё зависит от ориентации затравочных пластин и от того, в каком направлении идёт рост. Например, для аметиста берут пластины с параллельными гранями. В зависимости от ориентации платсин примеси химических соединений входят к кристаллическую решётку по-разному. В итоге — разные минералы, разный цвет! Тёмно-дымчатая, почти чёрная окраска мориона объясняется наличием алюминия, кроме того, выращенные кристаллы обязательно облучают.

Читайте также:
Кольцо на большом пальце у женщины что означает

Очень красив кварц голубого цвета (перукнит). Его окраска объясняется наличием ионов кобальта. Возможно получить оттенки от нежно-голубого до ярко-синего василькового. Но в природе такая разновидность кварца ещё не найдена.

Из жёлтых или жёлто-зелёных бериллов после нагревания получают кристаллы дивной красоты с голубоватой или голубовато-зелёной окраской. После такой обработки камень называют аквамарином.

Вентиляция для чистых помещений ПромКонВент.рф.

Английский

Перейти на английский

Artificial crystals and natural crystals

Искусственные кристаллы аметистов. Искусственные драгоценные и полудрагоценные камни, например, аметисты, выращенные на заводе, ничем не отличаются от своих знаменитых уральских и бразильских собратьев: ни внешне, ни по структуре. Удивляет не богатство разновидностей кристаллов, их цветовых оттенков, а сам размер! такие драгоценности увидишь не часто! Долго не могли понять природу окраски камня. Сначала предполагали, что эту окраску придаёт камню марганец. Но воспроизвести искусственным путём — не получалось. Позже стало известно, что аметистовая окраска кварца (а аметист — это кварц) вызвана наличием ионов четырёхвалентного железа.

Синтетический кристалл что это

(Публикация содержит частичный материал.

Интересующихся продолжением просьба звонить по тел. 050-9455328)

Автор доктор В. Ляховицкая

Материя, как хорошо известно, может находиться в трех агрегатных состояниях – газообразном, жидком и твердом, отличающихся друг от друга разной степенью взаимного притяжения молекул, атомов и ионов. В газах материальные частицы находятся в непрерывном движении. В твердых телах они "скованы ", причем в зависимости от того, хаотически или закономерно расположены частицы, различают аморфные и кристаллические твердые тела. Название кристалл ( по — гречески "кристаллос", застывший на холоде) еще в глубокой древности относилось к прозрачному кристаллу шестиугольной формы — кварцу ( горный хрусталь ). Он считался "небесной влагой", которая образовалась из льда, охлажденного до такой степени, что даже сильное пламя неспособно было вернуть его в первоначальное состояние.

Многогранники и симметрия

С незапамятных времен при производстве горных работ люди находили минералы, имеющие форму многогранников. Позднее все многогранники стали называть кристаллами. Возникает даже наука – кристаллография, которая занимается геометрическим описанием различных форм кристаллов. Импульсом к зарождению и развитию криталлографии в древности послужили находки природных минералов с ярко выраженными различными гранными формами По представлению древнегреческих философов формы с одинаковыми гранями, одинаковыми вершинами и одинаковыми ребрами символизировали основные элементы природы: огонь изображали тетраэдром (четырехгранник), воздух – октаэдром (восемь граней), воду – икосаэдром (двадцать граней) и землю – кубом (шестигранник). Часто многогранники имели не одинаковые грани, они были составлены из граней нескольких форм. Названия форм крсталлов сохранились и используются до сих пор..С изучением многогранников связано также нахождение законов симметрии. Слово "симметрия " в точном переводе с греческого означает "соразмерность". В одной из ниш здания знаменитой картинной галереи "Прадо" в Мадриде стоит мраморная статуя, изображающая красивую женщину. Надпись на цоколе свидетельствует о том, что это статуя богини симметрии. Существование такой статуи служит доказательством того, что понятие о симметрии появилось в очень давние времена, задолго до того, как симметрия стала предметом науки – кристаллографии. Слово симметрия, по-видимому, ранее отождествлялось со словом "красота". "Обожествление" симметрии ясно указывает на то, что в древности, как и сейчас, она играла большую роль в искусстве. Как правило, никому не известны имена ученых, которые ввели новые понятия или термины. К таким понятиям в частности, относится и понятие об элементах симметрии, без которого невозможно представить себе науку кристаллографию а именно, о плоскостях симметрии, осях и центре симметрии. Относительно простейшего и важнейшего элемента симметрии – плоскости симметрии можно сказать определенно, что представление о ней сложилось у человека с незапамятных времен, поскольку обнаружить ее можно было непосредственно в фигурах зверей, птиц, насекомых, самого человека и великого множества самых обычных предметаов. Труднее было прийти к представлению об оси симметрии как о такой прямой, при вращении вокруг которой фигура совмещается с собой несколько раз, пока не окажется в исходном положении. Принято было называть ось симметрии осью н-го порядка, если фигура, обладающая этой осью, совмещается с собой при полном повороте вокруг оси н-раз. Порядок осей у кристаллов невелик – 1, 2, 3, 4, 6. Центром симметрии называется такая точка, по обе стороны от которой в любом направлени находятся одинаковые точки, грани и ребра фигуры.

Читайте также:
Кольцо из бисера с цветочками туториал

Тайна природы кристаллов

Трудно представить себе человека, не встечавшегося с кристаллами в повседневной жизни. Они существуют в природе, в быту и даже в человеческом организме. Всем известны кристаллы воды — лёд, снег, снежинки, часто встречаемся с процессом засахаривания варенья, меда (кристаллы сахарозы), с появлением кристаллов винной кислоты, с образованием кристаллов в печени или почках человека. А драгоценные камни: алмаз, тораз, изумруд, рубин и т.д. Сколько создано легенд и детективных историй о знаменитых драгоценностях, таким кристаллам приписывали мистические свойства. Красота, цвет и симметрия кристаллов (в том числе и специально обработанных) с давних времен использовались в качестве украшений, амулетов. Минералоги рассматривали кристаллы как вечные, застывшие и неизменные творения природы, которые следует хранить в музеях, и которые резко отличаются от живой природы- растений, животных.Лишь в ХV11 – ХV111 веках появились первые научные взгляды на природу крсталлов. Было предположено, что кристалл построен из мельчайших "кирпичиков". Рассматривая внимательно разбитый кристалл можно было обнаружить, что отколовшиеся кусочки имеют правильную форму, подобную форме большого кристалла (их "родителя"). Хотелось предположить, что форма сохраняется даже у крпичиков, невидимых глазом. Тайна такого невидимого мельчайшего "кирпичика " была открыта при исследовании явления дифракции рентгеновских лучей только в начале ХХ века (М.Лауэ, 1912г.). Метод дал возможность измерять расстояния между материальными частицами, составляющими упорядоченную пространственную решетку. Открытие дифракции рентгеновских лучей (называемых также Х — лучи) произвело полный переворот в кристаллографии. Появилась новая область кристаллохимии — рентгеноструктурный анализ, давший возможность изучать структуру кристаллов на уровне атомов. Для таких исследований требовались монокристаллы т.е. кристаллы, состоящие из одного индивидуума, хотя и небольшого размера. Пионерами в исследование атомной структуры кристаллов были отец и сын Брэгги, определившие структуру поваренной соли, алмаза и некоторых других минералов. Возникла необходимость в новых объектах — монокристаллах, невстречавшихся в природе.

Дальнейшее развитие кристаллографии пошло по трем руслам:

1. Изучение атомного строения кристаллов.

2. Исследование процессов зарождения и роста кристаллов, нахождение методов их выращивания.

3. Изучение новых физических свойств кристаллов, привязанных к их атомной структуре, и использование искусственно полученных кристаллов с заданными свойствами в различных отраслях науки и техники.

Итак, искусственные кристаллы. Их также называют синтетическими, чтобы подчеркнуть, что такие кристаллы, в отличие от природных минералов, получены в лабораторных условиях.Трудно сказать, когда было обнаружено; что кристаллы могут зарождаться и расти при испарении водных растворов сахара, гипосульфита или поваренной соли. Во всяком случае, такие факты были хорошо известны еще до возникновения научной химии, минералогии и кристаллографии. Интересно, что до начала ХХ века химики уже научиись очищать различные вещества с помощью многократной перекристаллизации, а кристаллогафы умели получать из растворов мелкие хорошо образованные кристаллы для исследования их оптических и других свойств.Казалось бы, неподвижная, как бы застывшая, геометрически правильная внешняя форма кристаллов проиворечит понятию о жизни, как о чем-то неустойчивом, непрерывно меняющем свой облик. Однако, исследования в области кристаллизации показали, что всякий кристалл, как и все существующее в природе, претерпевают со временем ряд изменений, составляющих то, что условно называют его "жизнью".

Кристаллы зарождаются, растут, питаются, разрушаются, подвергаются регенерации, старению, усталости, срастаются между собой и даже пожирают друг друга. Все эти термины, взятые из биологии, исторически отражают несогласие натуролистов Х!Х столетия с теми их предшественниками, которые рассматривали кристаллы как вечные и неизменные творения природы.Однако, не только классики-естествоиспытатели, но и ученые более поздних поколений ограничивались, как правило, наблюдательными опытами и общими суждениями. Описательная стадия стала отступать лишь к 20-30-м гг. ХХ века.

Читайте также:
Флюорит камень кому подходит по знаку зодиака

О том же говорит и статистика: до 1970 года число публикаций по росту кристаллов росло экспоненциально. Экстраполируя экспоненту назад ко времени, когда число публикаций было равно одной в год, мы придем примерно к 1915 г. Сейчас ежегодно выходит несколько тысяч публикаций. В них исследуются процессы зарождения кристаллов, структуры их поверхностей, процессы роста из газа, раствора, расплава, при химичеких реакциях и электролизе, образование дефектов в растущих кристаллах. Эти научные исследования очень нужны практике – промышленность выпускает тысячи тонн кристаллов для электроники, вычислительной техники, оптикии, акустики. Развитие кристаллографии и ее двух ветвей -кристаллофизики – исследование физических свойств кристаллов, и кристаллохимии- исследования структуры кристаллов теперь в большей степени зависит от наличия новых синтетических кристаллов.

Получить небольшой кристалл неконтролируемого качества – не слишком сложная проблема. А вот добиться заданых свойств в очень большом или даже в маленьком кристалле очень трудно, и этот процесс иногда занимает десятилетия.

Как же получают (выращивают) кристаллы

Размеры монокристаллических образований, с которыми имеют дело ученые и производственники, занимают шкалу от нанометров (10-9м ) до 1 метра длиной и 0,5 метра радиусом, Ниже будут приведены методы выращивания массивных, видимых невооруженным глазом кристаллов. Для получения монокристаллов малой толщины (пленок) или нанометровых образований (фулерены, нанотрубки) используют другие методы.Выращивание кристаллов – это сложный физико- химический процесс, течение которого зависит от многих самых разнообразных факторов, и в котором четко прослеживается атомная природа вещества. Процессы кристаллизации представляют собой фазовые превращения, которые соответствуют переходу атомов из вещества с полностью или частично неупорядоченной кофигурацией (пар, жидкость, аморфное состояние) в вещество с упорядоченной конфигурацией кристаллической решетки. Количество методов выращивания монокристаллов ограничено числом возможных таких переходов в кристаллическое состояние.

Рост из газовой фазы

Кристаллизация многих практически важных веществ при физической конденсации из паров, состоящих из атомов или молекул элементов, образующих кристалл, трудна ввиду малых скоростей роста и низкого давления паров нужных компонентов. Рост из газовой фазы с участием химических реакций, когда газ состоит из различных химических соединений атомов, образующих кристалл, нашел большее применение, особенно при получении пленок, нитевидных кристаллов, нанокристаллов.

Рост из растворов

Выращивание кристаллов из растворов считают наиболее универсальным методом. Кристаллизуемое вещество находится в чистом растворителе или в растворителе, содержащим добавки. Из-за небольшой скорости роста кристаллы в растворах обычно растут ограненными, т.е. покрываются атомно гладкими поверхностями.Растворители и условия выращивания кристаллов (состав, температура, давление) подбираются на основе физико-химических данных кристаллизуемого вещества. Растворителями могут служить как соединения, не входящие в состав кристалла, так и соединения из компонентов выращиваемого кристалла. Чаще всего в качестве растворителя испольуют воду, в которой растворяются многие неорганические вещества.Органические вещества, которые не растворяются в воде, кристаллизуют из органических растворов. Особые случаи роста кристаллов из растворов связаны либо с приложением давления в замкнутом объеме (специальные аппараты – автоклавы), либо с высокой температурой, когда в качестве растворителя используют расплавленные вещества. Первые называют гидротермальные растворы, вторые – высокотемпературные растворы (растворы в расплаве).

Производство синтетических / искусственных минералов – целая самостоятельная индустрия, продукция которой используется в различных областях промышленности. Синтетические кристаллы Сапфира (фото продукции АО «Монокристалл» г. Ставрополь — мирового лидера по синтезированию Сапфиров). Синтетические кристаллы Сапфира (фото продукции АО «Монокристалл» г. Ставрополь — мирового лидера по синтезированию Сапфиров). Зачем нужны искусственные ювелирные камни? Наверно, основная причина необходимости искусственных камней в ювелирном деле, это снижение себестоимости украшения (стоимость производства изделия).

"Источники"
  • https://dic.academic.ru/dic.nsf/bse/132569/%D0%A1%D0%B8%D0%BD%D1%82%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5
  • https://www.kristallikov.net/page24.html
  • http://www.rehes.org/lst3/lst3_46.html

Рейтинг
Загрузка ...