Спирт реагирует с оксидом серебра

Под действием разных окислителей происходит неполное окисление спиртов и образуются вещества, содержащие карбонильную группу: альдегиды, кетоны или карбоновые кислоты.

Первичные спирты окисляются до альдегидов при взаимодействии с оксидом меди((II)):
C n H 2 n + 1 CH 2 OH + CuO ⟶ t C n H 2 n + 1 CHO + Cu + H 2 O .
При окислении вторичных спиртов образуются кетоны.

Действие более сильных окислителей ( KMnO 4 , K 2 Cr 2 O 7 и др.) приводит к образованию карбоновых кислот:

C n H 2 n + 1 CH 2 OH ⟶ [ O ] C n H 2 n + 1 COOH .
При сгорании спиртов происходит их полное окисление до углекислого газа и воды:
C n H 2 n + 1 OH + 1 , 5n O 2 → n CO 2 + ( n + 1 ) H 2 O + Q .

Отщепление молекул воды происходит при действии на спирты концентрированной серной кислоты. В зависимости от температуры молекула воды отщепляется от одной молекулы спирта или от двух.

Внутримолекулярная дегидратация происходит в присутствии серной концентрированной кислоты при температуре выше (140°C) и приводит к образованию алкенов:

Окисление этилового спирта марганцовкой

C n H 2 n + 1 OH → C n H 2 n + H 2 O .

Межмолекулярная дегидратация происходит, если концентрированная серная кислота действует на спирт при температуре ниже (140°C). Образуются простые эфиры:

2C n H 2 n + 1 OH → C n H 2 n + 1 O C n H 2 n + 1 + H 2 O .
Взаимодействие с активными металлами
В реакциях спиртов с активными металлами образуются алкоголяты и выделяется водород:
2C n H 2 n + 1 OH + 2Na → 2C n H 2 n + 1 ONa + H 2 ↑ .
Взаимодействие с галогеноводородами
При взаимодействии насыщенных спиртов с галогеноводородами образуются галогеналканы и вода:
C n H 2 n + 1 OH + HBr → C n H 2 n + 1 Br + H 2 O .

В присутствии серной концентрированной кислоты спирты реагируют с карбоновыми кислотами с образованием сложных эфиров:

Источник: www.yaklass.ru

3.5. Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола.

Вебинары по Химии

В зависимости от типа углеводородного радикала, а также в некоторых случаях особенностей прикрепления группы -ОН к этому углеводородному радикалу соединения с гидроксильной функциональной группой разделяют на спирты и фенолы.

Читайте также:
Серебро жить как хочется

Спиртами называют соединения, в которых гидроксильная группа соединена с углеводородным радикалом, но не присоединена непосредственно к ароматическому ядру, если таковой имеется в структуре радикала.

Если в структуре углеводородного радикала содержится ароматическое ядро и гидроксильная группа, при том соединена непосредственно с ароматическим ядром, такие соединения называют фенолами.

Окисление этилового спирта оксидом меди(II)

Почему же фенолы выделяют в отдельный от спиртов класс? Ведь, например, формулы

очень похожи и создают впечатление веществ одного класса органических соединений.

Однако непосредственное соединение гидроксильной группы с ароматическим ядром существенно влияет на свойства соединения, поскольку сопряженная система π-связей ароматического ядра сопряжена также и с одной из неподеленных электронных пар атома кислорода. Из-за этого в фенолах связь О-Н более полярна по сравнению со спиртами, что существенно повышает подвижность атома водорода в гидроксильной группе. Другими словами, у фенолов значительно ярче, чем у спиртов выражены кислотные свойства.

Химические свойства спиртов

Одноатомные спирты

Замещение атома водорода в гидроксильной группе

1) Спирты реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от защитной пленки Al2O3), при этом образуются алкоголяты металлов и выделяется водород:

Образование алкоголятов возможно только при использовании спиртов, не содержащих растворенной в них воды, так как в присутствии воды алкоголяты легко гидролизуются:

2) Реакция этерификации

Реакцией этерификации называют взаимодействие спиртов с органическими и кислородсодержащими неорганическими кислотами, приводящее к образованию сложных эфиров.

Такого типа реакции являются обратимыми, поэтому для смещения равновесия в сторону образования сложного эфира, реакцию желательно проводить при нагревании, а также в присутствии концентрированной серной кислоты как водоотнимающего агента:

Замещение гидроксильной группы

1) При действии на спирты галогеноводородных кислот происходит замещение гидроксильной группы на атом галогена. В результате такой реакции образуются галогеналканы и вода:

Читайте также:
Кольцо из серебра спаси и сохрани для женщин

2) При пропускании смеси паров спирта с аммиаком через нагретые оксиды некоторых металлов (чаще всего Al2O3) могут быть получены первичные, вторичные или третичные амины:

Тип амина (первичный, вторичный, третичный) будет в некоторой степени зависеть от соотношения исходного спирта и аммиака.

Дегидратация

Дегидратация, фактически подразумевающая отщепление молекул воды, в случае спиртов различается на межмолекулярную дегидратацию и внутримолекулярную дегидратацию.

При межмолекулярной дегидратации спиртов одна молекула воды образуется в результате отщепления атома водорода от одной молекулы спирта и гидроксильной группы — от другой молекулы.

В результате этой реакции образуются соединения, относящиеся к классу простых эфиров (R-O-R):

Внутримолекулярная дегидратация спиртов протекает таким образом, что одна молекула воды отщепляется от одной молекулы спирта. Данный тип дегидратации требует несколько более жестких условий проведения, заключающихся в необходимости использования заметно более сильного нагревания по сравнению с межмолекулярной дегидратацией. При этом из одной молекулы спирта образуется одна молекула алкена и одна молекула воды:

Поскольку молекула метанола содержит только один атом углерода, для него невозможна внутримолекулярная дегидратация. При дегидратации метанола возможно образование только простого эфира (CH3-O-CH3).

Нужно четко усвоить тот факт, что в случае дегидратации несимметричных спиртов внутримолекулярное отщепление воды будет протекать в соответствии с правилом Зайцева, т.е. водород будет отщепляться от наименее гидрированного атома углерода:

Дегидрирование спиртов

а) Дегидрирование первичных спиртов при нагревании в присутствии металлической меди приводит к образованию альдегидов:

б) В случае вторичных спиртов аналогичные условия приведут у образованию кетонов:

в) Третичные спирты в аналогичную реакцию не вступают, т.е. дегидрированию не подвергаются.

Горение

Спирты легко вступают в реакцию горения. При этом образуется большое количество тепла:

Неполное окисление

Неполное окисление первичных спиртов может приводить к образованию альдегидов и карбоновых кислот.

В случае неполного окисления вторичных спиртов возможно образование только кетонов.

Читайте также:
Сколько стоят кресты из серебра

Неполное окисление спиртов возможно при действии на них различных окислителей, например, таких, как кислород воздуха в присутствии катализаторов (металлическая медь), перманганат калия, дихромат калия и т.д.

При этом из первичных спиртов могут быть получены альдегиды. Как можно заметить, окисление спиртов до альдегидов, по сути, приводит к тем же органическим продуктам, что и дегидрирование:

Следует отметить, что при использовании таких окислителей, как перманганат калия и дихромат калия в кислой среде возможно более глубокое окисление спиртов, а именно до карбоновых кислот. В частности, это проявляется при использовании избытка окислителя при нагревании. Вторичные спирты могут в этих условиях окислиться только до кетонов.

ПРЕДЕЛЬНЫЕ МНОГОАТОМНЫЕ СПИРТЫ

Замещение атомов водорода гидроксильных групп

Многоатомные спирты так же, как и одноатомные реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от пленки Al2O3); при этом может заместиться разное число атомов водорода гидроксильных групп в молекуле спирта:

2. Поскольку в молекулах многоатомных спиртов содержится несколько гидроксильных групп, они оказывают влияние друг на друга за счет отрицательного индуктивного эффекта. В частности, это приводит к ослаблению связи О-Н и повышению кислотных свойств гидроксильных групп.

Большая кислотность многоатомных спиртов проявляется в том, что многоатомные спирты, в отличие от одноатомных, реагируют с некоторым гидроксидами тяжелых металлов. Например, нужно запомнить тот факт, что свежеосажденный гидроксид меди реагирует с многоатомными спиртами с образованием ярко-синего раствора комплексного соединения.

Так, взаимодействие глицерина со свежеосажденными гидроксидом меди приводит к образованию ярко-синего раствора глицерата меди:

Данная реакция является качественной на многоатомные спирты. Для сдачи ЕГЭ достаточно знать признаки этой реакции, а само уравнение взаимодействия уметь записывать необязательно.

3. Так же, как и одноатомные спирты, многоатомные могут вступать в реакцию этерификации, т.е. реагируют с органическими и кислородсодержащими неорганическими кислотами с образованием сложных эфиров. Данная реакция катализируется сильными неорганическими кислотами и является обратимой. В связи с этим при осуществлении реакции этерификации образующийся сложный эфир отгоняют из реакционной смеси, чтобы сместить равновесие вправо по принципу Ле Шателье:

Читайте также:
Курица адлерское серебро описание

Если в реакцию с глицерином вступают карбоновые кислоты с большим числом атомов углерода в углеводородном радикале, получающиеся в результате такой реакции, сложные эфиры называют жирами.

В случае этерификации спиртов азотной кислотой используют так называемую нитрующую смесь, представляющую собой смесь концентрированных азотной и серной кислот. Реакцию проводят при постоянном охлаждении:

Сложный эфир глицерина и азотной кислоты, называемый тринитроглицерином, является взрывчатым веществом. Кроме того, 1%-ный раствор данного вещества в спирте обладает мощным сосудорасширяющим действием, что используется при медицинских показаниях для предотвращения приступа инсульта или инфаркта.

Замещение гидроксильных групп

Так, например, реакция этиленгликоля с бромоводородом протекает с последовательным замещением гидроксильных групп на атомы галогена:

Химические свойства фенолов

Как уже было сказано в самом начале данной главы, химические свойства фенолов заметно отличаются от химических свойств спиртов. Связано это с тем, что одна из неподеленных электронных пар атома кислорода в гидроксильной группе сопряжена с π-системой сопряженных связей ароматического кольца.

Кислотные свойства

Фенолы являются более сильными кислотами, чем спирты, и в водном растворе в очень небольшой степени диссоциированы:

Большая кислотность фенолов по сравнению со спиртами в плане химических свойств выражается в том, что фенолы, в отличие от спиртов, способны реагировать со щелочами:

Однако, кислотные свойства фенола выражены слабее, чем даже у одной из самых слабых неорганических кислот – угольной. Так, в частности, углекислый газ, при пропускании его через водный раствор фенолятов щелочных металлов, вытесняет из последних свободный фенол как еще более слабую, чем угольная, кислоту:

Очевидно, что любой другой более сильной кислотой фенол также будет вытесняться из фенолятов:

3) Фенолы являются более сильными кислотами, чем спирты, а спирты при этом реагируют с щелочными и щелочноземельными металлами. В связи с этим очевидно, что и фенолы будут реагировать с указанными металлами. Единственное, что в отличие от спиртов, реакция фенолов с активными металлами требует нагревания, так как и фенолы, и металлы являются твердыми веществами:

Читайте также:
Время и стекло это серебро

Галогенирование

Реакция с бромом не требует каких-либо особых условий. При смешении бромной воды с раствором фенола мгновенно образуется белый осадок 2,4,6-трибромфенола:

Нитрование

При действии на фенол смеси концентрированных азотной и серной кислот (нитрующей смеси) образуется 2,4,6-тринитрофенол – кристаллическое взрывчатое вещество желтого цвета:

Поскольку фенолы являются ненасыщенными соединениями, возможно их гидрирование в присутствии катализаторов до соответствующих спиртов:

Источник: scienceforyou.ru

Спирт реагирует с оксидом серебра

Нажимая на кнопку «Задать вопрос», я даю согласие на обработку персональных данных

Задать вопрос

Задать вопрос

С какими из перечисленных веществ может реагировать этиловый спирт : натрий, гидроксид натрия, бромоводород, оксид серебра , серная концентрированная кислота, оксид меди. Запишите уравнения возможных реакций.

  • 20 January 2013
  • Ответ оставил: Nik22232

2C2H5OH + 2Na = 2C2H5ONa = H2

C2H5OH + HBr = C2H5Br + H2O

2C2H5OH + CuO = CH3COH + Cu + H2O

2C2H5OH ( +H2SO4 как условие реакции, при темп меньше 140 град) = С2H4 + H2O

2C2H5OH ( +H2SO4 как условие реакции, при темп ,больше 140 град) = С2H5-O-С2H5 + H2O

Нравится —> 0

  • 20 January 2013
  • Ответ оставил: TTY

вступает в реакции с натрием и с галогеноводородами с гидроксидом натирия окисление оксидом меди

Нравится —> 0

  • НЕ НАШЛИ ОТВЕТ?

Если вас не устраивает ответ или его нет, то попробуйте воспользоваться поиском на сайте и найти похожие ответы по предмету школьной программы: биология.
На сегодняшний день (18.07.2023) наш сайт содержит 239971 вопросов, по теме: биология. Возможно среди них вы найдете подходящий ответ на свой вопрос.

Нажимая на кнопку «Ответить на вопрос», я даю согласие на обработку персональных данных
Ответить на вопрос

Последние опубликованные вопросы

Источник: vseznanija.com

Рейтинг
Загрузка ...