Сегодня урок химии 14 — Металлы побочных подгрупп. Железо и его соединения. Сплавы железа – чугун и сталь.
Они являются d-элементами. Особенность строения их атомов заключается в том, что на внешнем электронном слое, как правило, содержатся два s-электрона (иногда один – Cr, Cu, у палладия в его невозбужденном состоянии нет s-электронов) и во втором снаружи электронном слое их атомов имеется не полностью занятый электронами d-подуровень. Для образования химических связей атомы элементов могут использовать не только внешний электронный слой, но также d-электроны и свободные d-орбитали предшествующего слоя. Этим и объясняются их отличительные свойства.
Возрастание порядкового номера не сопровождается существенным изменением структура внешнего электронного слоя; поэтому химические свойства этих элементов изменяются не так резко, как у элементов главных подгрупп. Закономерности изменения химической активности у элементов побочных подгрупп сверху вниз иные, чем у главных подгрупп, химическая активность (за некоторым исключением) уменьшается.
Железо в организме! Как узнать о недостатке или избытке! В каких продуктах много железа
Так, например, золото химически менее активно по сравнению с медью. В побочных подгруппах с возрастанием порядкового номера элемента окислительные свойства понижаются. Так, соединения хрома (VI) – сильные окислители, а для соединений молибдена (VI) и вольфрама – не характерны. Можно отметить отдельные общие закономерности общих подгрупп.
Максимальная положительная степень окисления совпадает с номером группы (исключения составляют железо – +6; кобальт, никель, медь – +3). С увеличением степени окисления атомов металлов побочных подгрупп основные свойства их оксидов и гидроксидов уменьшаются, а кислотные – усиливаются. Из металлов побочных подгрупп наибольшее практическое значение имеют медь, цинк, титан, хром, железо. Свойства соединений железа рассмотрим подробнее.
Электронная формула железа: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 .
Возможные степени окисления: 0, +2, +3, +6.
Нахождение в природе: магнитный железняк, магнетит Fe3O4, красный железняк Fe2O3, бурый железняк 2Fe2O3∙3H2O; шпатовый железняк, железный шпат, сидерит FeСO3, железный колчедан, пирит FeS2.
Физические свойства. Серебристый пластичный металл, ρ=7,9 г/см 3 , tпл=1536 o С, легко намагничивается и размагничивается.
Химические свойства. Реагирует с неметаллами:
Соединения железа
Соединения железа (II). Оксид и гидроксид проявляют основной характер:
Гидроксид и соли легко окисляются:
Феррит натрия NaFeO2 — соль несуществующей железистой кислоты ( в свободном виде не получена).
При сплавлении Fe2O3 с оксидами NiO, ZnO, MnO получают ферриты Fe2O3 ∙ MeO, обладающие магнитными свойствами.
Соли подвергаются гидролизу:
Соединения железа (VI)
Феррат калия K2FeO4 – соль несуществующей железной кислоты.
Сплавы железа.
Чугун выплавляют в доменных печах, изготовленных из огнеупорных материалов.
Перед выплавкой чугуна железную руду обогащают.
Железо. Подгруппа железа
В печи кокс сгорает, соединяясь с кислородом, получающийся оксид углерода (IV) реагирует с избытком углерода (коксом) с образованием оксида углерода (II).
Под действием оксида углерода (II) оксиды железа, содержащиеся в концентрате, постепенно восстанавливаются до металла.
Сказанное иллюстрируются реакциями:
При горении кокса образуется диоксид углерода
CO2 , проходя через раскаленный кокс, превращается в СО:
При температуре 450-500 о С оксид углерода (II) восстанавливает оксид железа (III) до Fe3O4:
При более высокой температуре (600 o С) Fe3O4 восстанавливается до оксида железа (II):
Далее при температуре 70 o С оксид железа(II) восстанавливается до металлического железа:
FeO + CO → Fe + CO2↑
Некоторое количество оксидов железа восстанавливается также углеродом кокса.
Оксиды алюминия, кремния и другие оксиды, содержащиеся в шихте, взаимодействуют с оксидом кальция, который образуется при разложении известняка. В результате образуются шлаки, поскольку имеют меньшую плотность.
Сталь. Сталь – ковкий сплав железа с углеродом и другими веществами (металлами и неметаллами). Массовая доля углерода в стали не превышает 2%.
При выплавке сталей в них вводят легирующие добавки, в качестве которых используют кремний, марганец, кобальт, никель, ванадий, хром, вольфрам, молибден, титан, алюминий и другие металлы. Изменяя состав, получают стали, обладающие повышенной прочностью, износостойкостью, коррозионной стойкостью.
При конверторном способе кислород продувают через расплавленный чугун в специальных аппаратах – конверторах. Это способ, позволяющий получать сталь высокого качества.
При мартеновском способе получения стали кислород или воздух пропускается над расплавленным чугуном. При этом железо окисляется в поверхностном слое. Мартеновский способ хуже конверторного, сталь получается худшего качества.
При превращении чугуна в сталь протекают следующие реакции:
и незначительно: 2Fe + O2 → 2FeO
Полученные оксиды SiO2, MnO2 и CO2 удаляются в виде шлака или газов (СО2):
Стали классифицируют по их назначению — инструментальные, строительные и специальные; по химическому составу — углеродистые, специальные.
Это был урок химии 14 — Металлы побочных подгрупп. Железо и его соединения. Сплавы железа – чугун и сталь
Источник: sovety-tut.ru
Подгруппа железа
1) На воздухе железо легко окисляется в присутствии влаги (ржавление):
4Fe + 3O2 + 6H2 O ® 4Fe(OH)3
Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II,III):
3Fe + 2O2 ® Fe3O4
2) При высокой температуре (700–900°C) железо реагирует с парами воды:
3Fe + 4H2O –t°® Fe3O4 + 4H2
3) Железо реагирует с неметаллами при нагревании:
2Fe + 3Br2 –t°® 2FeBr3
Fe + S –t°® FeS
4) Железо легко растворяется в соляной и разбавленной серной кислотах:
Fe + 2HCl ® FeCl2 + H2
Fe + H2SO4(разб.) ® FeSO4 + H2
В концентрированных кислотах–окислителях железо растворяется только при нагревании
2Fe + 6H2SO4(конц.) –t°® Fe2(SO4)3 + 3SO2 + 6H2O
Fe + 6HNO3(конц.) –t°® Fe(NO3)3 + 3NO2 + 3H2O
(на холоде концентрированные азотная и серная кислоты пассивируют железо).
5) Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.
Fe + CuSO4 ® FeSO4 + Cu¯
Соединения двухвалентного железа
Гидроксид железа (II)
Образуется при действии растворов щелочей на соли железа (II) без доступа воздуха:
FeCl + 2KOH ® 2KCl + Fе(OH)2¯
Fe(OH)2 — слабое основание, растворимо в сильных кислотах:
Fe(OH)2 + H2SO4 ® FeSO4 + 2H2O
Fe(OH)2 + 2H+ ® Fe2+ + 2H2O
При прокаливании Fe(OH)2 без доступа воздуха образуется оксид железа (II) FeO:
Fe(OH)2 –t°® FeO + H2O
В присутствии кислорода воздуха белый осадок Fe(OH)2, окисляясь, буреет – образуя гидроксид железа (III) Fe(OH)3:
4Fe(OH)2 + O2 + 2H2O ® 4Fe(OH)3
Соединения железа (II) обладают восстановительными свойствами, они легко превращаются в соединения железа (III) под действием окислителей:
10FeSO4 + 2KMnO4 + 8H2SO4 ® 5Fe2(SO4)3 + K2SO4 + 2MnSO4 + 8H2O
6FeSO4 + 2HNO3 + 3H2SO4 ® 3Fe2(SO4)3 + 2NO + 4H2O
Соединения железа склонны к комплексообразованию (координационное число=6):
FeCl2 + 6NH3 ® [Fe(NH3)6]Cl2
Fe(CN)2 + 4KCN ® K4[Fe(CN)6](жёлтая кровяная соль)
Качественная реакция на Fe2+
При действии гексацианоферрата (III) калия K3[Fe(CN)6] (красной кровяной соли) на растворы солей двухвалентного железа образуется синий осадок (турнбулева синь):
3FeSO4 + 2K3[Fe(CN)6] ® Fe3[Fe(CN)6]2¯ + 3K2SO4
3Fe2+ + 3SO42- +6K+ + 2[Fe(CN)6]3- ® Fe3[Fe(CN)6]2¯ + 6K+ + 3SO42-
3Fe2+ + 2[Fe(CN)6]3- ® Fe3[Fe(CN)6]2¯
Соединения трёхвалентного железа
Оксид железа (III)
Образуется при сжигании сульфидов железа, например, при обжиге пирита:
4FeS2 + 11O2 ® 2Fe2O3 + 8SO2
или при прокаливании солей железа:
2FeSO4 –t°® Fe2O3 + SO2 + SO3
Fe2O3 — основной оксид, в незначительной степени проявляющий амфотерные свойства
Fe2O3 + 6HCl –t°® 2FeCl3 + 3H2O
Fe2O3 + 6H+ –t°® 2Fe3+ + 3H2O
Fe2O3 + 2NaOH + 3H2O –t°® 2Na[Fe(OH)4]
Fe2O3 + 2OH- + 3H2O ® 2[Fe(OH)4]-
Гидроксид железа (III)
Образуется при действии растворов щелочей на соли трёхвалентного железа: выпадает в виде красно–бурого осадка
Fe(NO3)3 + 3KOH ® Fe(OH)3¯ + 3KNO3
Fe3+ + 3OH- ® Fe(OH)3¯
Fe(OH)3 – более слабое основание, чем гидроксид железа (II).
Это объясняется тем, что у Fe2+ меньше заряд иона и больше его радиус, чем у Fe3+, а поэтому, Fe2+ слабее удерживает гидроксид-ионы, т.е. Fe(OH)2 более легко диссоциирует.
В связи с этим соли железа (II) гидролизуются незначительно, а соли железа (III) — очень сильно. Для лучшего усвоения материалов этого раздела рекомендуется просмотреть видеофрагмент (доступен только на CDROM). Гидролизом объясняется и цвет растворов солей Fe(III): несмотря на то, что ион Fe3+ почти бесцветен, содержащие его растворы окрашены в жёлто-бурый цвет, что объясняется присутствием гидроксоионов железа или молекул Fe(OH)3, которые образуются благодаря гидролизу:
Fe3+ + H2O « [Fe(OH)]2+ + H+
[Fe(OH)]2+ + H2O « [Fe(OH)2]+ + H+
[Fe(OH)2]+ + H2O « Fe(OH)3 + H+
При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза. Fe(OH)3 обладает слабо выраженной амфотерностью: он растворяется в разбавленных кислотах и в концентрированных растворах щелочей:
Fe(OH)3 + 3HCl ® FeCl3 + 3H2O
Fe(OH)3 + 3H+ ® Fe3+ + 3H2O
Fe(OH)3 + NaOH ® Na[Fe(OH)4]
Fe(OH)3 + OH- ® [Fe(OH)4]-
Соединения железа (III) — слабые окислители, реагируют с сильными восстановителями:
2Fe+3Cl3 + H2S-2 ® S0 + 2Fe+2Cl2 + 2HCl
Качественные реакции на Fe3+
1) При действии гексацианоферрата (II) калия K4[Fe(CN)6] (жёлтой кровяной соли) на растворы солей трёхвалентного железа образуется синий осадок (берлинская лазурь):
4FeCl3 +3K4[Fe(CN)6] ® Fe4[Fe(CN)6]3¯ + 12KCl
4Fe3+ + 12Cl- + 12K+ + 3[Fe(CN)6]4- ® Fe4[Fe(CN)6]3¯ + 12K+ + 12Cl-
4Fe3+ + 3 [Fe(CN)6]4- ® Fe4[Fe(CN)6]3¯
2) При добавлении к раствору, содержащему ионы Fe3+ роданистого калия или аммония появляется интенсивная кроваво-красная окраска роданида железа(III):
FeCl3 + 3NH4CNS « 3NH4Cl + Fe(CNS)3
(при взаимодействии же с роданидами ионов Fe2+ раствор остаётся практически бесцветным).
Кобальт и его соединения
По химической активности кобальт уступает железу. Он легко растворяется в кислотах — окислителях и медленно в обычных кислотах:
Co + 2HCl ® CoCl2 + H2
В простых соединениях у кобальта наиболее устойчива степень окисления +2, в комплесных – +3. Водные растворы солей кобальта (II) обычно окрашены в розовый цвет.
Гидроксид кобальта (II)
Образуется при действии щелочей на соли кобальта (II):
CoSO4 + 2KOH ® K2SO4 + Co(OH)2¯
На воздухе розовый осадок Co(OH)2 постепенно буреет, превращаясь в гидроксид кобальта (III):
4Co(OH)2 + O2 + 2H2O ® 4Co(OH)3
Сo(OH)2 — слабое основание, растворимое в сильных кислотах:
Co(OH)2 + 2HCl ® CoCl2 + 2H2O
При прокаливании Co(OH)2 образует оксид кобальта (II) CoO:
Co(OH)2 –t°® CoO + H2O
Cоединения кобальта склонны к комплексообразованию (координационное число=6):
Co(OH)2 + 6NH3 ® [Co(NH3)](OH)2
Никель и его соединения
Никель легко растворяется в разбавленной азотной кислоте и медленно в соляной и серной кислотах
Ni + 2HCl ® NiCl2 + H2
Ион Ni2+ в водных растворах имеет зелёную окраску. Для никеля наиболее характерна степень окисления +2. Оксид и гидроксид никеля проявляют основной характер.
NiO + H2SO4 –t°® NiSO4 + H2O
NiCl2 + 2NaOH –t°® Ni(OH)2¯(зелёный) + 2NaCl
Ni(OH)2 + H2SO4 ® NiSO4 + 2H2O
Соединения двухвалентного никеля могут давать комплексы с аммиаком:
Ni(OH)2 + 6NH2 ® [Ni(NH3)6](OH)2
Источник: www.examen.ru
Элементы подгруппы железа
Побочная подгруппа VIII-группы периодической системы химических элементов включает 9 элементов, объединенных вместе по геометрическим соображениям, о чем можно судить по их общим электронным формулам (без учета провала электрона):
В то же время близость их электронных конфигураций к завершению d-подуровня обуславливает сходство свойств элементов данной подгруппы и их соединений. Кроме этого, внутри подгруппы наряду с вертикальной аналогией более или менее отчетливо проявляется аналогия у элементов одного периода, которые образуют семейство железа (Fe, Co, Ni), легкие платиновые металлы (Ru, Rh, Pd) и тяжелые платиновые металлы (Os, Ir, Pt). При этом сходство внутри данных семейств иногда просматривается более четко, нежели подобие в пределах группы электронных аналогов.
Железо один из наиболее распространенных металлов земной коры (2 мол.%). Основные минералы: Fe3O4 — магнетит, Fe2O3 — гематит, Fe2O3×nH2O — лимонит, FeCO3 — сидерит, FeS2 — пирит. Рутений и осмий самостоятельных минералов практически не образуют, обычно сопутствуют платине и палладию в полиметаллических рудах.
В промышленности железо и его сплавы (чугун) получают восстановлением оксидов железа оксидом углерода(II) при высоких температурах:
Очень чистое железо получают разложением его пентакарбонила:
Железо и рутений — серебристо-белые металлы, осмий — металл голубовато-белого цвета.
Свойства | Fe | Ru | Os |
Плотность, г/см 3 | 7,87 | 12,37 | 22,61 |
Т.пл., °С |
Химические свойства. Железо — металл средней химической активности. В компактном состоянии в атмосфере сухого воздуха устойчиво, во влажном воздухе корродирует. Примеси сильно ускоряют данный процесс. При нагревании до температуры белого каления железо энергично окисляется кислородом:
При высоких температурах окисляется галогенами и серой:
С фосфором, углеродом и кремнием железо образует соединения переменного состава (Fe3P, Fe2P, FeP, Fe3Si2, FeSi, FeSi2, Fe3C).
При повышенных температурах железо окисляется парами воды и аммиака:
В ряду стандартных электродных потенциалов железо стоит левее водорода:
Fe 2+ + 2e — ¾® Fe; E 0 = -0,44 B
Легко растворяется в водных растворах кислот с образованием солей железа(II). Концентрированная азотная и серная кислоты на холоду железо пассивируют, при нагревании реагируют с образованием солей железа(III).
Рутений и осмий химически инертны, в обычных условиях на них не действуют даже активные неметаллы. В мелкоизмельченном состоянии осмий окисляется кислородом с образованием летучего OsO4, рутений медленно окисляется при высокой температуре, образуя RuO2 и RuO4.
В компактном состоянии рутений и в меньшей степени осмий устойчивы по отношению к кислотам и их смесям, но разрушаются при сплавлении со щелочами в присутствии окислителей:
Ru + 3KClO + 2NaOH = Na2RuO4 + 3KCl + H2O
Источник: studopedia.su