— элемент № 30 таблицы Менделеева, переходный металл 2 группы.
Описание
Простое вещество. Сплавы цинка (латунь) были известны с глубокой древности (2400—2000 до н. э.). Получение цинка описал Страбон (I в. до н. э.). Промышленное производство цинка в Европе началось в 1743, в Китае на 400 лет раньше. Чистый цинк получен только в XVI в. Пластический ковкий голубовато-серый металл плотностью 7,13 г/см3. tплав 419,88 °С; tкип 907 °С.
Реагирует с кислотами, щелочами, аммиаком и солями аммония, в присутствии паров воды — с хлором и бромом, при нагревании — с кислородом.
История
Сплав цинка с медью — латунь — был известен ещё в Древней Греции, Древнем Египте, Индии (VII в.), Китае (XI в.). Долгое время не удавалось выделить чистый цинк. В 1738 году в Англии Уильямом Чемпионом был запатентован дистилляционный способ получения цинка.
В промышленном масштабе выплавка цинка началась также в XVIII в.: в 1743 году в Бристоле вступил в строй первый цинковый завод, основанный Уильямом Чемпионом, где получение цинка проводилось дистилляционным способом. В 1746 А. С. Маргграф в Германии разработал похожий способ получения чистого цинка путём прокаливания смеси его оксида с углём без доступа воздуха в глиняных огнеупорных ретортах с последующей конденсацией паров цинка в холодильниках. Маргграф описал свой метод во всех деталях и этим заложил основы теории производства цинка. Поэтому его часто называют первооткрывателем цинка.
Цинк — Металл, Придающий МУЖСКУЮ СИЛУ!
В 1805 году Чарльз Гобсон и Чарльз Сильвестр из Шеффилда запатентовали способ обработки цинка — прокатка при 100—150 °C . Первый в России цинк был получен на 1 января 1905 года. Первые заводы, где цинк получали электролитическим способом, появились в 1915 году в Канаде и США.
Распространение
Содержание цинка в земной коре — 8,3·10−3 масс%. Цинк в природе как самородный металл не встречается. Его добывают из полиметаллических руд, содержащих 1-4 % Zn в виде сульфида, а также Cu, Pb, Ag, Au, Cd, Bi. Из многочисленных минералов цинка наибольшее значение имеют сфалерит ZnS (67 %), содержащий примесь Cd, Ir, Ga и Ge, вюртцит ZnS (63 %), в зоне окисления — смитсонит ZnCO3 (52 %) и каламин Zn[Si2O7](OH)2 (53,7 %). Главные промышленные минералы свинцово-цинковых руд — галенит и сфалерит.
В день взрослому здоровому человеку рекомендуется употреблять около 8 — 10 мг данного элемента. Суточная норма потребления варьируется в зависимости от возраста, пола и индивидуальных особенностей человека.
Очень много цинка содержится в морепродуктах, семенах тыквы и подсолнечника, некоторых крупах.
Есть в природе минеральные воды, которые также богаты наличием цинка в составе.
Изотопы
В природе встречается пять изотопов цинка, среди которых чаще всего встречается 64Zn (48,63 % от общего числа).[1] Период полураспада этого изотопа настолько велик, что его радиоактивностью можно пренебречь.[2] Аналогично, обычно не считается радиоактивным 70Zn (0,6 %) с периодом полураспада 1,3·1016 лет. В природе встречаются также 66Zn (28 %), 67Zn (4 %) и 68Zn (19 %).
Зарегистрирован ряд радиоактивных изотопов. 65Zn с периодом полураспада 243,66 дней живет дольше из них. За ним следует 72Zn с периодом полураспада 46,5 часов. Существует 10 ядерных изомеров цинка. Среди них наибольший период полураспада имеет 69mZn — 13,76 часов.[1] Верхний индекс m обозначает, что этот изотоп метастабилен.
Ядро метастабильного изотопа находится в возбужденном состоянии, из которого возвращается в основное состояние, излучая фотон, гамма-квант. Изотоп 61Zn имеет три возбужденных состояния, а изотоп 73Zn — два.[3] Изотопы 65Zn, 71Zn, 77Zn и 78Zn имеют одно возбужденное состояние.[1]
Обычно радиоизотопы цинка с массовым числом, меньшим чем 66, распадаются с захватом электрона. Продуктом распада в таком случае один из изотопов меди:[1]
Для изотопов с массовым числом, больше чем 66, привычным каналом распада является бета-распад (β —), при котором образуются изотопы галлия:[1]
- NZn → NGa + e— + νE
Получение
В мире ежегодно производится 10 млн тонн цинка. Это четвертый по объему использования металл после железа, алюминия и меди. В основном сырьем служат серные руды, в которых сфалерит смешан с сульфидами других металлов.
Цинк в природе как самородный металл не встречается. Его добывают из полиметаллических руд, содержащих 1-4 % Zn в виде сульфида, а также Cu, Pb, Ag, Au, Cd, Bi. Руды обогащают селективной флотацией, получая цинковые концентраты (50-60 % Zn) и одновременно свинцовые, медные, а иногда также пиритные концентраты.
Цинковые концентраты обжигают в печах в кипящем слое, переводя сульфид цинка в оксид ZnO; при этом образуется сернистый газ SO2, затрачиваемый на производство серной кислоты. От ZnO к Zn идут двумя путями.
Пирометаллургическим (дистилляционным) способом, который существует издавна, обожженный концентрат подвергают спеканию для увеличения зернистости и газопроницаемости, а затем восстанавливают углем или коксом при 1200—1300 °С: ZnO + С = Zn + CO. Образовавшуюся при этом пару металла конденсируют и разливают в формы. Сначала восстановление проводили только в ретортах из обожженной глины, обслуживаемых вручную, позднее стали применять вертикальные механизированные реторты с карборунда, затем — шахтные и дуговые электропечи; из свинцово-цинковых концентратов цинк получают в шахтных печах с дутьем. Производительность постепенно повышалась, но цинк содержал до 3 % примесей, в том числе и ценный кадмий. Дистилляционно цинк очищают ликвацией (то есть отстаиванием жидкого металла от железа и части свинца при 500 °C), достигая чистоты 98,7 %. Применяют иногда более сложную и дорогую очистку — ректификацию, она дает металл чистотой 99,995 % и позволяет извлекать из цинка кадмий.
Основной способ получения цинка — электролитический (гидрометаллургический). Обожженные концентраты обрабатывают серной кислотой; полученный сульфатный раствор очищают от примесей осаждением их цинковой пылью и подвергают электролизу в ваннах, плотно выложенных внутри свинцом или винипластом. Цинк оседает на алюминиевых катодах, с которых его ежесуточно удаляют (сдирают) и плавят в индукционных печах. Обычно чистота электролитного цинка 99,95 %, полнота извлечения его из концентрата (с учетом переработки отходов) 93-94 %. Из отходов производства получают цинковый купорос, Pb, Cu, Cd, Au, Ag, иногда также In, Ga, Ge, Tl.
Соединения цинка.
Цинк образует многочисленные бинарные соединения с неметаллами, некоторые из них обладают полупроводниковыми свойствами.
Соли цинка бесцветны (если не содержат окрашенных анионов), их растворы имеют кислотную среду вследствие гидролиза. При действии растворов щелочей и аммиака (начиная с pH ~ 5) основные соли осаждаются и переходят в гидроксид, который растворяется в избытке осадителя.
Оксид цинка
ZnO является самым важным промышленным цинксодержащим соединением. Будучи побочным продуктом производства латуни, он стал известен раньше, чем сам металл. Оксид цинка получают, сжигая на воздухе пары цинка, образующиеся при плавке руды. Более чистый и белый продукт производят сжиганием паров, полученных из предварительно очищенного цинка.
Обычно оксид цинка – это белый тонкий порошок. При нагревании его окраска меняется на желтую в результате удаления кислорода из кристаллической решетки и образованиея нестехиометрической фазы Zn1+x
O(
x
Ј 7,10–5). Избыточное количество атомов цинка приводит к появлению дефектов решетки, захватывающих электроны, которые впоследствии возбуждаются при поглощении видимого света. Добавляя в оксид цинка 0,02–0,03%-ный избыток металлического цинка, можно получить целый спектр цветов – желтый, зеленый, коричневый, красный, однако красноватые оттенки природной формы оксида цинка – цинкита – появляются по другой причине: за счет присутствия марганца или железа. Оксид цинка ZnO амфотерен; он растворяется в кислотах с образованием солей цинка и в щелочах с образованием гидроксоцинкатов, таких как [Zn(OH)3]– и [Zn(OH)4]2–:
ZnO + 2OH– + H2O = [Zn(OH)4]2–
Основное промышленное применение оксида цинка – производство резины, в котором он сокращает время вулканизации исходного каучука.
В качестве пигмента при производстве красок оксид цинка имеет преимущества по сравнению с традиционными свинцовыми белилами (основной карбонат свинца), благодаря отсутствию токсичности и потемнения под действием соединений серы, однако уступает оксиду титана по показателю преломления и кроющей способности.
Оксид цинка увеличивает срок жизни стекла и поэтому используется в производстве специальных стекол, эмалей и глазурей. Еще одна важная область применения – в составе нейтрализующих косметических паст и фармацевтических препаратов.
В химической промышленности оксид цинка обычно является исходным веществом для получения других соединений цинка, в которых наиболее важными являются мыла (т.е. соединения жирных кислот, такие как стеарат, пальмитат и другие соли цинка). Их используют в качестве отвердителей красок, стабилизаторов пластмасс и фунгицидов.
Небольшая, но важная область применения оксида цинка – производство цинковых ферритов. Это шпинели типа ZnIIx
Гидроксид цинка
Zn(OH)2 образуется в виде студенистого белого осадок при добавлении щелочи к водным растворам солей цинка. Гидроксид цинка, так же как и оксид, амфотерен:
Источник: the-sparta.ru
Цинк (химич. элемент)
Цинк (лат. Zincum), Zn, химический элемент II группы периодической системы Менделеева; атомный номер 30, атомная масса 65,38, синевато-белый металл. Известно 5 стабильных изотопов с массовыми числами 64, 66, 67, 68 и 70; наиболее распространён 64 Zn (48,89%). Искусственно получены 9 радиоактивных изотопов, среди которых наиболее долгоживущий 65 Zn с периодом полураспада T1/2 = 245 сут; применяется как изотопный индикатор.
Историческая справка. Сплав цинка с медью — латунь — был известен ещё древним грекам и египтянам. Чистый цинк долгое время не удавалось выделить. В 1746 А. С. Маргграф разработал способ получения металла прокаливанием смеси его окиси с углём без доступа воздуха в глиняных огнеупорных ретортах с последующей конденсацией паров цинка в холодильниках. В промышленном масштабе выплавка цинка началась в 17 в.
Физические и химические свойства. Цинк — металл средней твёрдости. В холодном состоянии хрупок, а при 100—150 °С весьма пластичен и легко прокатывается в листы и фольгу толщиной около сотых долей миллиметра. При 250 °С вновь становится хрупким. Полиморфных модификаций не имеет.
Кристаллизуется в гексагональной решётке с параметрами а = 2,6594 , с = 4,9370 . Атомный радиус 1,37 ; ионный Zn 2+ — 0,83 . Плотность твёрдого цинка 7,133 г/см 3 (20 °С), жидкого 6,66 г/см 3 (419,5 °С); tпл 419,5 °С; tкип 906 °С. Температурный коэффициент линейного расширения 39,7 × 10 -6 (20—250 °С), коэффициент теплопроводности 110,950 вт/(м × К) 0,265 кал/см × сек × °С (20 °С), удельное электросопротивление 5,9 × 10 -6 ом × см (20 °С), удельная теплоёмкость цинка 25,433 кдж/(кг × К) [6,07 кал/г × о С)]. Предел прочности при растяжении 200—250 Мн/м 2 (2000—2500 кгс/см 2 ), относительное удлинение 40—50%, твёрдость по Бринеллю 400—500 Мн/м 2 (4000—5000 кгс/см 2 ). Цинк диамагнитен, его удельная магнитная восприимчивость — 0,175 × 10 -6 .
Внешняя электронная конфигурация атома Zn 3d 10 4s 2 . Степень окисления в соединениях +2. Нормальный окислительно-восстановительный потенциал, равный 0,76 в, характеризует цинк как активный металл и энергичный восстановитель. На воздухе при температуре до 100 °С цинк быстро тускнеет, покрываясь поверхностной плёнкой основных карбонатов.
Во влажном воздухе, особенно в присутствии СО2, происходит разрушение металла даже при обычных температурах. При сильном нагревании на воздухе или в кислороде цинк интенсивно сгорает голубоватым пламенем с образованием белого дыма цинка окиси ZnO.
Сухие фтор, хлор и бром не взаимодействуют с цинком на холоду, но в присутствии паров воды металл может воспламениться, образуя, например, ZnCl2. Нагретая смесь порошка цинка с серой даёт сульфид цинка ZnS. Сульфид цинка выпадает в осадок при действии сероводорода на слабокислые или аммиачные водные растворы солей Zn.
Гидрид ZnH2 получается при взаимодействии LiAIH4 с Zn (CH3)2 и др. соединениями цинка; металлоподобное вещество, разлагающееся при нагревании на элементы. Нитрид Zn3N2 — чёрный порошок, образуется при нагревании до 600 °С в токе аммиака; на воз духе устойчив до 750 °С, вода его разлагает. Карбид цинка ZnC2 получен при нагревании цинка в токе ацетилена.
Сильные минеральные кислоты энергично растворяют цинк, особенно при нагревании, с образованием соответствующих солей. При взаимодействии с разбавленными HCl и H2SO4 выделяется H2, а с HNO3 — кроме того, NO, NO2, NH3. С концентрированными HCl, H2SO4 и HNO3 цинк реагирует, выделяя соответственно H2, SO2, NO и NO2.
Растворы и расплавы щелочей окисляют цинк с выделением На и образованием растворимых в воде цинкатов. Интенсивность действия кислот и щелочей на цинк зависит от наличия в нём примесей. Чистый цинк менее реакционноспособен по отношению к этим реагентам из-за высокого перенапряжения на нём водорода.
В воде соли цинка при нагревании гидролизуются, выделяя белый осадок гидроокиси Zn (OH)2 (см. Амфотерность). Известны комплексные соединения, содержащие цинк, например [Zn (NH3)4] SO4 и др.
Получение. Цинк добывают из полиметаллических руд, содержащих 1—4% Zn в виде сульфида, а также Cu, Pb, Ag, Au, Cd, Bi. Руды обогащают селективной флотацией, получая цинковые концентраты (50—60% Zn) и одновременно свинцовые, медные, а иногда также пиритные концентраты.
Цинковые концентраты обжигают в печах в кипящем слое, переводя сульфид цинка в окись ZnO; образующийся при этом сернистый газ SO2 расходуется на производство серной кислоты. От ZnO к Zn идут двумя путями.
По пирометаллургическому (дистилляционному) способу, существующему издавна, обожжённый концентрат подвергают спеканию для придания зернистости и газопроницаемости, а затем восстанавливают углём или коксом при 1200—1300 °С: ZnO + С = Zn + CO. Образующиеся при этом пары металла конденсируют и разливают в изложницы.
Сначала восстановление проводили только в ретортах из обожжённой глины, обслуживаемых вручную, позднее стали применять вертикальные механизированные реторты из карборунда (см. Огнеупоры), затем — шахтные и дуговые электропечи; из свинцово-цинковых концентратов цинк получают в шахтных печах с дутьём. Производительность постепенно повышалась, но цинк содержал до 3% примесей, в том числе ценный кадмий. Дистилляционный цинк очищают ликвацией (т. е. отстаиванием жидкого металла от железа и части свинца при 500 °С), достигая чистоты 98,7%. Применяющаяся иногда более сложная и дорогая очистка ректификацией даёт металл чистотой 99,995% и позволяет извлекать кадмий.
Основной способ получения цинка — электролитический (гидрометаллургический). Обожжённые концентраты обрабатывают серной кислотой; получаемый сульфатный раствор очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу в ваннах, плотно выложенных внутри свинцом или винипластом. Цинк осаждается на алюминиевых катодах, с которых его ежесуточно удаляют (сдирают) и плавят в индукционных печах. Обычно чистота электролитного цинка 99,95%, полнота извлечения его из концентрата (при учёте переработки отходов) 93—94%. Из отходов производства получают цинковый купорос, Pb, Cu, Cd, Au, Ag; иногда также In, Ga, Ge, Tl.
Применение. Около половины производимого цинка расходуется на защиту стали от коррозии (см. Цинкование).
Поскольку цинк в ряду напряжений стоит до железа, то при попадании оцинкованного железа в коррозионную среду разрушению подвергается цинк. Благодаря хорошим литейным качествам и низкой температуре плавления из цинка отливают под давлением различные мелкие детали самолётов и др. машин.
Сплавы меди с цинком — латунь, нейзильбер, а также цинка со свинцом и др. металлами широко применяются в технике (см. Цинковые сплавы). Цинк даёт с золотом и серебром интерметаллиды (нерастворимые в жидком свинце) и поэтому цинк применяется для рафинирования свинца от благородных металлов.
В виде порошка цинк служит восстановителем в ряде химико-технологических процессов: в производстве гидросульфита, при осаждении золота из промышленных цианистых растворов, меди и кадмия при очистке растворов цинкового купороса и др. Многие соединения цинка являются люминофорами, например три основных цвета на экране кинескопа зависят от ZnS × Ag (синий цвет), ZnSe × Ag (зелёный цвет) и Zn3(PO4)2 × Mn (красный цвет). Важными полупроводниковыми материалами служат соединения цинка типа A II B VI — ZnS, ZnSe, ZnTe, ZnO. Магнитно-мягкими ферритами отечественных марок МН и HH являются соответственно марганец- и никель-цинковые шпинели.
Наиболее распространённые химические источники тока (например, Лекланше элемент, окиснортутный элемент) имеют в качестве отрицательного электрода цинк.
Биологическая роль цинка связана с его участием в ферментативных реакциях, протекающих в клетках. Он входит в состав важнейших ферментов: карбоангидразы, различных дегидрогеназ, фосфатаз, связанных с дыханием и др. физиологическими процессами, протеиназ и пептидаз, участвующих в белковом обмене, ферментов нуклеинового обмена (РНК- и ДНК-полимераз) и др. Цинк играет существенную роль в синтезе молекул информационной РНК на соответствующих участках ДНК (транскрипция), в стабилизации рибосом и биополимеров (РНК, ДНК, некоторые белки).
Медицинское значение цинка. Дефицит цинка в организме ведёт к карликовости, задержке полового развития; при его избыточном поступлении в организм возможны (по экспериментальным данным) канцерогенное влияние и токсическое действие на сердце, кровь, гонады и др. Производственные вредности могут быть связаны с неблагоприятным воздействием на организм как металлического цинка, так и его соединений. При плавке цинкосодержащих сплавов возможны случаи литейной лихорадки. Препараты цинка в виде растворов (сульфат цинка) и в составе присыпок, паст, мазей, свечей (окись цинка) применяют в медицине как вяжущие и дезинфицирующие средства.
А. А. Каспаров, Г. Н. Красовский.
Лит.: Краткая химическая энциклопедия, т. 5, М., 1967; Лакерник М. М., Пахомова Г. Н., Металлургия цинка и кадмия, М., 1969; Севрюков Н. Н., Кузьмин Б. А., Челищев Е, В., Общая металлургия, М., 1976; Парибок Т. А., О роли цинка в метаболизме, в сборнике: Биологическая роль микроэлементов и их применение в сельском хозяйстве и медицине, М., 1974; Ковальский В. В., Геохимическая экология, М., 1974; Школьник М. Я., Микроэлементы в жизни растений, Л., 1974; Пейве Я. В., Микроэлементы и ферменты, в сборнике: Физиологическая роль и практическое применение микроэлементов, Рига, 1976; Bowen Н. J. М., Trace elements in biochemistry, L. — N. Y., 1966; Движков П. П., Соединения цинка, в кн.: Многотомное руководство по патологической анатомии, под ред. А. И. Струкова, т. 8, кн. 1, М., 1962; Вредные вещества в промышленности, под ред. Н. В. Лазарева, [т.] 2, М. — Л., 1965.
Источник: xumuk.ru
Zn что это за элемент
Цинк — элемент побочной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 30. Обозначается символом Zn (лат. Zincum). Простое вещество цинк при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка).
В четвертом периоде цинк является последним d-элементом, его валентные электроны 3d 10 4s 2 . В образовании химических связей участвуют только электроны внешнего энергетического уровня, поскольку конфигурация d 10 является очень устойчивой. В соединениях для цинка характерна степень окисления +2.
Цинк – химически активный металл, обладает выраженными восстановительными свойствами, по активности уступает щелочно-земельным металлам. Проявляет амфотерные свойства.
Взаимодействие цинка с неметаллами
При сильном нагревании на воздухе сгорает ярким голубоватым пламенем с образованием оксида цинка:
2Zn + O2 → 2ZnO.
При поджигании энергично реагирует с серой:
Zn + S → ZnS.
С галогенами реагирует при обычных условиях в присутствии паров воды в качестве катализатора:
Zn + Cl2 → ZnCl2.
При действии паров фосфора на цинк образуются фосфиды:
Zn + 2P → ZnP2 или 3Zn + 2P → Zn3P2.
С водородом, азотом, бором, кремнием, углеродом цинк не взаимодействует.
Взаимодействие цинка с водой
Реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:
Zn + H2O → ZnO + H2.
Взаимодействие цинка с кислотами
В электрохимическом ряду напряжений металлов цинк находится до водорода и вытесняет его из неокисляющих кислот:
Zn + 2HCl → ZnCl2 + H2;
Zn + H2SO4 → ZnSO4 + H2.
Взаимодействует с разбавленной азотной кислотой, образуя нитрат цинка и нитрат аммония:
4Zn + 10HNO3 → 4Zn(NO3)2 + NH4NO3 + 3H2O.
Реагирует с концентрированными серной и азотной кислотами с образованием соли цинка и продуктов восстановления кислот:
Zn + 2H2SO4 → ZnSO4 + SO2 + 2H2O;
Zn + 4HNO3 → Zn(NO3)2 + 2NO2 + 2H2O
Взаимодействие цинка со щелочами
Реагирует с растворами щелочей с образованием гидроксокомплексов:
Zn + 2NaOH + 2H2O → Na2[Zn(OH)4] + H2
при сплавлении образует цинкаты:
Zn + 2KOH → K2ZnO2 + H2.
Взаимодействие с аммиаком
С газообразным аммиаком при 550–600°С образует нитрид цинка:
3Zn + 2NH3 → Zn3N2 + 3H2;
растворяется в водном растворе аммиака, образуя гидроксид тетраамминцинка:
Zn + 4NH3 + 2H2O → [Zn(NH3)4](OH)2 + H2.
Взаимодействие цинка с оксидами и солями
Цинк вытесняет металлы, стоящие в ряду напряжения правее него, из растворов солей и оксидов:
Zn + CuSO4 → Cu + ZnSO4;
Zn + CuO → Cu + ZnO.
Оксид цинка (II) ZnO – белые кристаллы, при нагревании приобретают желтую окраску. Плотность 5,7 г/см 3 , температура возгонки 1800°С. При температуре выше 1000°С восстанавливается до металлического цинка углеродом, угарным газом и водородом:
ZnO + C → Zn + CO;
ZnO + CO → Zn + CO2;
ZnO + H2 → Zn + H2O.
С водой не взаимодействует. Проявляет амфотерные свойства, реагирует с растворами кислот и щелочей:
ZnO + 2HCl → ZnCl2 + H2O;
ZnO + 2NaOH + H2O → Na2[Zn(OH)4].
При сплавлении с оксидами металлов образует цинкаты:
ZnO + CoO → CoZnO2.
При взаимодействии с оксидами неметаллов образует соли, где является катионом:
2ZnO + SiO2 → Zn2SiO4,
ZnO + B2O3 → Zn(BO2)2.
Гидроксид цинка (II) Zn(OH)2 – бесцветное кристаллическое или аморфное вещество. Плотность 3,05 г/см 3 , при температуре выше 125°С разлагается:
Zn(OH)2 → ZnO + H2O.
Гидроксид цинка проявляет амфотерные свойства, легко растворяется в кислотах и щелочах:
Zn(OH)2 + H2SO4 → ZnSO4 + 2H2O;
Zn(OH)2 + 2NaOH → Na2[Zn(OH)4];
также легко растворяется в водном растворе аммиака с образованием гидроксида тетраамминцинка:
Zn(OH)2 + 4NH3 → [Zn(NH3)4](OH)2.
Получается в виде осадка белого цвета при взаимодействии солей цинка со щелочами:
ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl.
Источник: kardaeva.ru