Чему равно количество теплоты золота

Вам уже известно, что количество теплоты зависит от массы вещества, разности температур и рода вещества. Количество теплоты ($Q$) в СИ измеряется в джоулях ($Дж$).

Возьмем два тела одинаковой массы и температуры, но из разных веществ. Логично, что для их нагрева на $1 degree C$ потребуется разное количество теплоты. В этом случае у нас разный род веществ, из которых состоят тела. Здесь мы вводим новое понятие — удельная теплоемкость вещества.

На данном уроке мы рассмотрим это новое для нас определение, узнаем его физическое значение, познакомимся с удельной теплоемкостью различных веществ.

Удельная теплоемкость вещества

Удельная теплоемкость вещества — это физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой $1 space кг$ для того, чтобы его температура изменилась на $1 degree C$

Рассмотрим на примерах, как удельная теплоемкость характеризует вещество.

Возьмем $1 space кг$ воды и нагреем его на $1 degree C$ (рисунок 1).

ИСТОРИЯ ЗОЛОТА I Как металл изменил мир [История с Artifex]

Для этого нам понадобится $4200 space Дж$. Именно это количество теплоты и будет определять удельную теплоемкость воды.

А теперь нагреем на $1 degree C$ кусок свинца массой $1 space кг$ (рисунок 2).

В этот раз нам потребуется затратить $140 space Дж$. Это значение ожидаемо отличается от количества теплоты, затраченное на нагревание воды. Тем не менее, это количество теплоты так же будет характеризовать удельную теплоемкость свинца.

Единица измерения удельной теплоемкости

Удельная теплоемкость обозначается буквой $c$.

Читайте также:
В каком биоме много золота

Измеряется удельная теплоемкость вещества в $frac$.

Рассмотрим эту единицу измерения на примере графита. Его удельная теплоемкость равна $750 frac$. Что это означает?

Из этого значения мы можем сказать, что:

  1. Для нагревания куска графита массой $1 space кг$ на $1 degree C$ нам необходимо затратить количество теплоты, равное $750 space Дж$
  2. При охлаждении куска графиты массой $1 space кг$ на $1 degree C$ будет выделяться количество теплоты, равное $750 space Дж$
  3. При изменении температуры куска графита массой $1 space кг$ на $1 degree C$ он будет или поглощать, или выделять количество теплоты, равное $750 space Дж$

Табличные значения удельной теплоемкости

Существуют уже известные значения удельной теплоемкости различных веществ. Они представлены таблице 1.

Вещество $c, frac$ Вещество $c, frac$
Золото 130 Песок 820
Ртуть 140 Стекло 840
Свинец 140 Кирпич 880
Олово 230 Алюминий 920
Серебро 250 Масло подсолнечное 1700
Медь 400 Лед 2100
Цинк 400 Керосин 2100
Латунь 400 Эфир 2350
Железо 460 Дерево (дуб) 2400
Сталь 500 Спирт 2500
Чугун 540 Вода 4200
Графит 750 Гелий 5200

Таблица 1. Удельные теплоемкости некоторых веществ.

Вода имеет почти самую большую теплоемкость в таблице — $4200 frac$. Это означает, что вода, находящаяся в морях и океанах, поглощает большое количество теплоты, нагреваясь летом. Зимой воды начинает остывать и отдавать большое количество теплоты. Поэтому, в местностях, которые расположены в непосредственной близости от воды, летом не бывает очень жарко, а зимой не бывает очень холодно. По этой же причине воду широко используют в технике (например, охлаждение деталей во время их обработки) и быту (отопительный системы помещений).

Читайте также:
Почему бумажные деньги заменили золото

Песок имеет небольшую теплоемкость — $820 frac$. Он быстро нагревается и быстро остывает. Поэтому в пустыне днем очень жарко, а ночью температура может опуститься почти ниже $0 degree C$.

Удельная теплоемкость и агрегатные состояния вещества

Давайте взглянем в таблицу 1 и сравним значения удельной теплоемкости льда и воды.

Удельная теплоемкость льда — $ 2100 frac$, а воды — $4200 frac$. Но мы знаем, что одно и то же вещество в разных агрегатных состояниях.

Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна.

Например, при $-120 degree C$ ртуть будет находиться в твердом состоянии. Ее удельная теплоемкость будет равна $129 frac$. В жидком же состоянии удельная теплоемкость ртути равна $138 frac$.

Источник: obrazavr.ru

Удельная теплоёмкость

Молекулы имеют внутреннюю структуру, образованную атомами, которые могут совершать колебания внутри молекул. Кинетическая энергия, запасённая в этих колебаниях, отвечает не только за температуру вещества, но и за его теплоёмкость

Уде́льная теплоёмкость — это отношение теплоёмкости к массе, теплоёмкость единичной массы вещества (разная для различных веществ); физическая величина, численно равная количеству теплоты, которое необходимо передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу [1] .

В Международной системе единиц (СИ) удельная теплоёмкость измеряется в джоулях на килограмм на кельвин, Дж/(кг·К) [2] . Иногда используются и внесистемные единицы: калория/(кг·°C) и т. д.

Источник: wiki2.org

Чему равно количество теплоты золота

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

Количество теплоты – это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q.

Читайте также:
Можно ли золото класть в соль

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах — джоулях (Дж), как и всякий вид энергии.

Количество теплоты

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии — калория (кал), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты — соотношение между калорией и джоулем: 1 кал = 4,2 Дж.

количество теплоты

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты 2

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

Смотрите также конспект «Решение задач на количество теплоты»

Удельная теплоёмкость

Удельная теплоёмкость – это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Читайте также:
Fjfallon золото или нет

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты Q, необходимое для нагревания тела массой m от температуры t1°С до температуры t2°С, равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t2 — t1)

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Удельная теплоёмкость

Это конспект по теме «Количество теплоты. Удельная теплоёмкость». Выберите дальнейшие действия:

  • Перейти к следующему конспекту: «Уравнение теплового баланса»
  • Вернуться к списку конспектов по Физике
  • Посмотреть решение типовых задач на количество теплоты

Источник: uchitel.pro

Рейтинг
Загрузка ...