К металлам относятся вещества, обладающие хорошей электрической проводимостью с удельным сопротивлением р 10 — 7 — — 10 — 8 ом-м, высокой теплопроводностью, вязкостью, ковкостью. Высокая электропроводность металлов объясняется тем, что валентные электроны принадлежат не отдельным атомам, а всей кристаллической решетке в целом. Эти электроны называют свободными. [31]
Приведенные положения позволяют объяснить характерные свойства металлов. Высокая электропроводность металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разности потенциалов перемещаются от отрицательного полюса к положительному. С повышением температуры усиливаются колебания ионов ( атомов), что затрудняет прямолинейное движение электронов, в результате чего электросопротивление возрастает. При низких температурах колебательное движение ионов ( атомов) сильно уменьшается и электропроводность резко возрастает. Около абсолютного нуля сопротивление многих металлов практически отсутствует. Высокая теплопроводность металлов обусловливается как большой подвижностью свободных электронов, так и колебательным движением ионов ( атомов), вследствие чего происходит быстрое выравнивание температуры в массе металла. [32]
Медная и алюминиевая электропроводка в квартире. Разоблачим мифы
Приведенные положения позволяют объяснить характерные свойства металлов. Высокая электропроводность металлов объясняется присутствием в них свободных электронов, которые перемещаются в потенциальном поле решетки. С повышением темпера гуры усиливаются колебания ионов ( атомов), образуются вакансии и нарушается правильная периодичность потенциального поля, что затрудняет движение электронов, в результате чего электросопротивление возрастает. При низких температурах колебательное движение ионов ( атомов) сильно уменьшается и электропроводность возрастает. У некоторых металлов в результате образования пар электронов, движущихся упорядоченно при очень низких температурах ( 20К), электропроводность обращается в бесконечное и, — явление сверхпроводимости. Высокая теплопроводность металлов обусловливается большой подвижностью свободных электронов и в меньшей степени колебательным движением ионов. [33]
В отличие от ионных и ковалентных соединений металлы отличаются высокой электропроводностью и теплопроводностью. Высокая электропроводность металлов указывает на то, что электроны свободно могут передвигаться во всем его объеме. Иными словами металл можно рассматривать как кристалл, в узлах решетки которого расположены ионы, связанные электронами, находящимися в общем пользовании, т.е. в металлах имеет место сильно нелокализованная химическая связь. Совокупность электронов, обеспечивающих эту связь, называют электронным газом. [34]
Все металлы обладают высокой электропроводностью. Причина высокой электропроводности металлов заключается в слабой связи электронного газа с положительно заряженными ионами. Достаточно приложить небольшую разность электрических потенциалов к концам металлического тела, чтобы вызвать перемещение электронного газа — электрический ток. [36]
Серебро или медь?! Новый спор о проводах Daxx
Положительно заряженные атомы валентная связи), окружены как бы электронным газом, который может свободно передвигаться. Этим объясняется высокая электропроводность металлов . [37]
Свободные электроны перемещаются по объему металла, как бы не замечая ионов, находящихся в узлах кристаллической решетки. Этим и объясняется высокая электропроводность металлов . [38]
За счет обобществления электронов атомы становятся положительно заряженными ионами, которые обтекаются электронным газом, что и обусловливает связи между атомами ( ионами) в кристаллической решетке. Наличие электронного газа объясняет, в частности, высокую электропроводность металлов . [39]
Металлическая связь возникает при образовании из внешних ( относительно слабо связанных с ядром) электронов отрицательно заряженного электронного газа, в результате чего положительно заряженные ионы создают плотную, но пластичную кристаллическую решетку. Электроны, свободно перемещаясь между атомами, обеспечивают высокую электропроводность металлов . [40]
Металлическая связь осуществляется путем образования из внешних, относительно слабо связанных с ядром электронов отрицательно заряженного электронного газа, организующего положительно заряженные ионы в — плотную, но довольна пластичную кристаллическую решетку. Электроны легко перемещаются от атома к атому, обусловливая высокую электропроводность металла . Большинство металлов имеет одну из трех кристаллических решеток: гексагональную плотноупакованную, гранецентрированную кубическую или объ-емноцентрированную кубическую. Прочность металлической связи увеличивается с повышением концентрации электронного газа. [41]
Металлы, как проводники электрического тока
При прохождении электрического тока в металлах, существенных изменений не наблюдается, за исключением обязательного нагрева. Металлы отличаются высокой концентрацией электронов, влияющих на уровень проводимости. Происходит их постоянное движение с высокой скоростью.
В узлах кристаллических решеток металлов располагаются положительные ионы, производящие тепловые колебания. В промежутках между ними происходит движение свободных электронов, которым придается ускорение с помощью электрического поля.
Самый электропроводный металл в мире
Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), — серебро. Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.
Физический смысл проводимости
Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.
Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.
Удельная проводимость
Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.
Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.
Проводимость металлов
Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.
Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток.
Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл.
На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство — высокая теплопроводность.
Топ лучших проводников — металлов
4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:
- Серебро — 62 500 000.
- Медь – 59 500 000.
- Золото – 45 500 000.
- Алюминий — 38 000 000.
Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.
Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.
Источник: el-come.ru
Типы проводников
Технически чистая медь (Tough Pitch Copper, TPC) – тип металла, обычно используемого в в кабелях широкого назначения, например силовых кабелях и многих недорогих аудиокабелях. Технически чистая медь выплавляется один раз и формируется в виде цилиндрического проводника (проволоки), после чего остывает. Эта проволока многократно протягивается, пока не достигнет требуемого диаметра.
Технически чистая медь содержит примерно 300-500 миллионных долей кислорода и других примесей, что считается чересчур высоким уровнем для серьезных аудиоприложений. При использовании технически чистой меди в акустических кабелях потеря тонких деталей приводит к «глухому» звучанию аудиосистемы.
Бескислородная медь (OFC)
Способ получения бескислородной меди (Oxygen Free Copper, OFC) был разработан в Японии в 1975 году – к этому времени становилось все более очевидным, что качество звучания связано с качеством меди и ее обработкой в процессе производства кабеля.
Бескислородная медь с линейными кристаллами (LC-OFC)
В 1975 году компания Hitachi разработала собственный метод снижения зернистости меди, то есть уменьшения количества границ между кристаллами проводника. LC-OFC – запатентованный Hitachi процесс и их эксклюзивный продукт. После экструдирования медная проволока вновь нагревается (отжигается), благодаря чему снижается число примечей между границами кристаллов, а длина кристаллов увеличивается. Типичный кристалл в проводнике LC-OFC диаметром 1 мм имеет длину 130 мм – по сравнению со всего лишь 4 мм в проводниках из технически чистой и бескислородной меди. Компания Atlas Cables не использует LC-OFC – лучшие результаты дает медь ОСС, получаемая по методу Оно.
Медь, получаемая по методу непрерывного литья Оно (OCC)
В 1985 году профессор Оно из Технологического института Чиба (Япония) запатентовал метод ОСС для вытягивания монокристаллической меди из расплава. Обычно при застывании чистого металла его кристаллы образуют особый геометрический узор, “растущий” подобно тому, как растут ветви деревьев. У каждого из кристаллов есть границы, действующие как потенциальный барьер с нелинейным сопротивлением. Эти границы препятствуют свободному прохождению электрического тока.
В технологии ОСС после прохождения через литейную форму экструдированный металл разогревается заново, благодаря чему по краям заготовки образуются границы единой кристаллической структуры. Затем заготовка вытягивается, образуя цельный проводник. В проводнике диаметром 0,3 мм, изготовленном по методу Оно, длина кристалла достигает 125 метров!
Преимущества этой технологии очевидны – из-за отсутствия границ между кристаллами не нарушается целостность аудиосигнала, а принимающее оборудование получает больше информации, что приводит к повышению детальности звучания. В топовых кабелях Atlas используется медь ОСС.
TPC | OFC | OCC | ||
Чистота | >99,9% | >99,99% | >99,999% | |
Удельная масса | 8,75 | 8,926 | 8,938 | |
Газовые примеси | O2 | 200~500 мг/дм3 | ||
H2 | ||||
Средний размер кристалла | 0,007 м | 0,02 м | 125,00 м | |
Количество кристаллов на метр | 150 | 50 | 0,008 |
Посеребренная медь
Для посеребренных медных проводников характерна хорошая динамика в области верхних частот. Кабели из посеребренной меди могут «оживить» глухо звучащую систему, однако делают они это за счет ухудшения передачи низкочастотных сигналов. Кроме этого, кабели из посеребренной меди приводят к утомлению и раздражению слуха при длительном прослушивании.
В межблочных и акустических кабелях лучше избегать применения посеребренной меди, как и любых других материалов с различным сопротивлением. Хотя это сравнительно дешевый метод производства кабелей, которые поначалу звучат вроде бы прекрасно, компания Atlas Cables никогда не использовала и не будет использовать посеребренную медь в аналоговых кабелях. Наши клиенты часто жаловались, что с посеребренными кабелями других производителей их аудиосистема звучит так ярко, что они не могут этого больше выносить. Гораздо лучшие результаты достигаются при использовании чистой меди и высококачественных диэлектриков.
Чистое серебро
Благодаря низкому сопротивлению серебро – лучший проводник, чем медь. Однако любой проводник, будь то серебро или медь, при использовании в аудиоприложениях должен иметь достаточное поперечное сечение. Поскольку серебро существенно дороже меди, для снижения стоимости кабеля поперечное сечение серебряных кабелей часто «приносится в жертву», из-за чего басы становятся чересчур «легкими». Однако высококачественные серебряные кабели отличаются великолепной скоростью, динамикой и детальностью во всем акустическом спектре. В кабелях Atlas Asimi используются проводники из серебра OCC, поперечное сечение акустического кабеля Asimi достигает 3,5 м 2 ! Кабели Asimi смело можно назвать лучшими в мире.
Избранные серии
Zeno. High-End кабель для High-End наушников
Источник: www.atlascables.ru
Качество меди в проводе: какой производитель лучше?
Пожалуйста, посоветуйте производителей медного кабеля, у которых используется для производства реально чистая медь, а не какой-нибудь сплав с латунью или еще с чем-нибудь.
Требуется кабель типа ВВГ 2х16 или 3х16 с однопроволочными жилами. Имею подобный кабель производства завода Алюр, так у него уже более полугода конец без изоляции выглядит, как новый — блестит, ничуть даже не окислился. Не похоже на медь совсем! Откусить и согнуть — проблема — «дубовый» страшно!
Спасибо.
Такого не бывает. Самая реальная медь, это марка М00, но и там меди 99,9. Не поддавайтесь панике, не ищите латунь в медных проводах, не прыгайте со штангенциркулем возле жил, не используйте NYM-HUM, берите ВВГ от проверенных производителей.
Совершайте покупки не в подвальных магазинчиках, а в крупных сетях вашего города. Томск-кабель(если не изменяет память), был очень неплох, на монтажах десятками километров уходил, по высокой стороне.
Тем более такое сечение, 3х1.5 или 3х2.5 ещё поверю что подделывают, или выпускают с нарушением ТУ.
kationit написал:
Откусить и согнуть — проблема — «дубовый» страшно!
Уверяю, для ваших нужд он будет проводить электричество точно так же как медная шина марки М0.
kationit написал:
посоветуйте производителей медного кабеля, у которых используется для производства реально чистая медь,
Финские, шведские, америкосские и прочие, в странах которых есть реальная ответственность за соблюдение соответствия продукции заявленным характеристикам.
Кстати латунь не намного хуже по электропроводности, чем медь, бывает и мягкая, но намного жестче.
В проводах должна применяться достаточно чистая мягкая (отожженная или размягченная вальцовкой) медь.
При покупке проверяйте по степени мягкости, жесткая медь или плохо очищена от примесей или отливалась через фильеры без вальцовки.
Сечение проверяется микрометром или штангенциркулем, можно навивкой нескольких витков и измерением. Часто бывает что по наименованию и надписи на бирке и даже на изоляции например 2,5 а по факту 1,8.
Алюр, Севкабель и остальные — все грешат, название — не гарантия.
Хотя кого то интересует сам провод, а кого-то бумажка-сертификат.
Источник: mastergrad.com