Изобретение относится к технологии получения наночастиц золота. Способ получения наночастиц золота из сырья, содержащего железо и цветные металлы, включает получение царсководочного раствора золота с использованием царской водки.
Затем ведут флотоэкстракцию прекурсоров золота катионными ПАВ из раствора, отделение и испарение органической фазы для концентрирования рекурсоров золота. Далее проводят восстановление концентрата с получением дисперсии наночастиц золота. При этом исходное сырье вначале обрабатывают соляной кислотой с образованием нерастворимого осадка.
Получение царсководочного раствора осуществляют растворением в царской водке нерастворимого осадка. Перед флотоэкстракцией прекурсоров из царсководочного раствора удаляют азотную кислоту метиловым или этиловым спиртом или соляной кислотой. Техническим результатом является повышение эффективности способа получения наночастиц, а именно увеличение количества получаемых наночастиц золота или его гибридов с благородными металлами. 3 пр.
НаноМифы. Химия – Просто
Формула изобретения
Способ получения наночастиц золота из сырья, содержащего железо и цветные металлы, включающий получение царсководочного раствора золота с использованием царской водки, флотоэкстракцию из раствора прекурсоров золота катионными ПАВ, отделение и испарение органической фазы для концентрирования рекурсоров золота и восстановление концентрата с получением дисперсии наночастиц золота, отличающийся тем, что сырье вначале обрабатывают соляной кислотой с образованием нерастворимого осадка, получение царсководочного раствора осуществляют растворением в царской водке нерастворимого осадка и перед флотоэкстракцией прекурсоров удаляют из царсководочного раствора азотную кислоту метиловым или этиловым спиртом или соляной кислотой.
Описание изобретения к патенту
Изобретение относится к технологии получения наночастиц золота или наногибридов золота с другими металлами. Наночастицы золота применяются в парфюмерной, косметической, химической, ювелирной промышленности; для лечения и диагностики заболеваний, для аналитического определения различных веществ методом поверхностно-усиленной рамановской спектроскопии.
Известен способ получения наночастиц золота из железорудного сырья (патент РФ № 2424339). Он взят за прототип. Железорудное сырье флотируют, концентрат растворяют в царской водке, раствор подвергают ионной флотоэкстракции поверхностно-активными веществами для концентрирования прекурсоров золота, а затем прекурсоры золота восстанавливают экстрактом чайного листа.
Способ имеет недостатки. Во-первых, железорудное сырье не перерабатывается комплексно. Из концентрата кроме благородных металлов можно получить наночастицы оксидов железа и цветных металлов. Во-вторых, царской водкой золото извлекается из сырья не полностью. В-третьих, избыток азотной кислоты, который остается после разложения концентрата царской водкой, мешает ионной флотоэкстракции золота, т.к. хорошо флотируются катионоактивными ПАВ только хлоридные комплексы золота.
Репортаж Россия-1 наночастицы золота
Технической задачей изобретения является увеличение количества получаемых наночастиц золота или его гибридов с благородными металлами.
Технический результат достигается тем, что в способе получения наночастиц золота из сырья, содержащего железо и цветные металлы, включающем получение царсководочного раствора золота с использованием царской водки, флотоэкстракцию из растворов прекурсоров золота катионными ПАВ, отделение и испарение органической фазы для концентрирования прекурсоров золота и восстановление концентрата с получением дисперсии наночастиц золота, согласно изобретению, сырье вначале обрабатывают соляной кислотой с образованием нерастворимого осадка, получение царсководочного раствора осуществляют растворением в царской водке нерастворимого осадка и перед флотоэкстракцией прекурсоров удаляют из царсководочного раствора азотную кислоту метиловым или этиловым спиртом или соляной кислотой.
Если порошок железной руды обработать соляной кислотой, то в раствор переходят ионы железа, кремния, никеля, кобальта, марганца, меди, цинка, кремния. Оставшиеся частицы руды становятся более мелкими и пористым. Они лучше растворяются в царской водке. После растворения в царской водке азотная кислота мешает образованию солей хлоридного комплекса золота и катионного ПАВ.
Азотную кислоту удаляют восстановителями — низшими спиртами или соляной кислотой. При данном способе переработки сырья появляется возможность из водных растворов соляной кислоты известными способами получить наночастицы оксидов железа и оксида кремния, наночастицы цветных металлов. Сущность изобретения поясняется примерами.
Порошок железной руды, содержащий по данным рентгеновской дифрактометрии Fe 2 O 3 +Fe 3 O 4 13,5%, SiO 2 86,5%, весом 300 г обрабатывали 580 мл 6 М HCl. Кипятили 5 часов при перемешивании. Верхний бурый слой жидкости солянокислых солей железа и других элементов сливали. Из него получали наночастицы магнетита и диоксида кремния известными способами.
Нерастворимый осадок синего цвета обрабатывали кипячением в царской водке в течение 5 часов. Полученный раствор обрабатывали дважды кипячением с 6 М HCl для разложения азотной кислоты. Остаток влажных солей растворяли в 1 М HCl с получением 10 мл раствора.
Во флотатор с 1000 мл 0,5 М HCl добавляли 10 мл полученного раствора и 0,03345 г цетилпиридиний хлорида (ЦПХ), растворенного в 5 мл этилового спирта, до 0,0001 М во флотаторе. Добавляли во флотатор 50 мл органического растворителя и флотировали 1 час. После отделения и испарения органической фазы получили небольшое количество белого порошка, который растворяли в 10 мл воды.
Раствор в пробирке продували азотом и перемешивали ультразвуком. Получали раствор розового цвета, к которому прибавляли 1,5 мл 0,6 М раствора восстановителя гидразингидрата и перемешивали еще 10 минут. К полученной смеси добавляли 1 мл 2 М KOH, перемешивали 10 минут. Получали мутноватый раствор, который через сутки стал коричневым.
Коричневый цвет дисперсии указывает, что размер наночастиц золота равен примерно 20 нм. УФ-видимый спектр этой дисперсии имел полосу плазменного поглощения с максимумом 530 нм.
После отстаивания раствора появился коричневый осадок в результате агрегации наночастиц. Осадок отделяли центрифугированием, промывали этиловым спиртом и высушивали. Получили 0,45 г порошка. Нанопорошок золота использовали для снятия фотоснимков на просвечивающем электронном микроскопе. Размер наночастиц по данным ПЭМ был 15±6 нм.
Скрап позолоченных ножек транзисторов растворяли в царской водке. Для удаления окислов азота полученный раствор обрабатывали метиловым спиртом и испаряли до влажных солей, которые затем растворяли в 1 М HCl. Полученный раствор 50 мл объединили с 1000 мл 0,5 М HCl и загружали во флотатор. Туда же добавляли 1,34 г ЦПХ, растворенного в 10 мл этилового спирта. Раствор сразу становился мутным.
Сверху во флотатор добавляли 50 мл смеси хлороформа, толуола и амилового спирта в соотношении 1:3:6 (по объему) и флотировали в течение 1 часа. Верхний слой прекурсора золота с растворителями отделяли. Растворители испаряли. Получали остатки прекурсора в виде пасты темно-коричневого цвета.
Пасту в количестве 0,26 г растворяли в 20 мл дистиллированной воды при перемешивании ультразвуком в течение 10 минут. Получали прозрачный раствор, который стал темным после добавления 3 мл 0,6 М раствора гидразингидрата. В пробирку добавили 2 мл 2 М раствора KOH и перемешивали еще 10 минут. Получали темно-коричневую дисперсию наночастиц золота.
Полученные таким образом несколько раз дисперсии разбавляли этиловым спиртом в 2 раза и центрифугировали. Осадки промывали спиртом и снова центрифугировали. После испарения спирта нанопорошок золота исследовали на ПЭМ. Наночастицы золота имели размер 5±3 нм.
Порошок железной руды весом 300 г состава, как в примере 1, разлагали царской водкой известным способом. Получали 0,23 г нанопорошка с золотом вместо 0,45 г по новому способу.
Таким образом, удаляя предварительно железо и кремний из руды и азотную кислоту из царской водки, получают больше наночастиц золота.
Источник: www.freepatent.ru
Нанозолото из чая
Американские ученые разработали способ получения наночастиц из золота с помощью черного чая.
Наночастицы золота всё шире используются в разных областях, например, в химии для получения катализаторов, в электронике для создания новых материалов, в биологии для разработки сенсоров. Одно из важнейших применений наночастиц из золота – использование в медицине в качестве основы для систем доставки лекарственных средств против рака. Однако, хотя сами наночастицы золота низкотоксичны и биологически совместимые, для их синтеза обычно используют вещества, попадание которых в организм недопустимо (например, борогидриды натрия). Не прореагировавшие вещества и возможные побочные вредные продукты приходится удалять. Поэтому вопрос о создании “зеленой нанотехнологии”, которая создает наноматериалы без нанесения ущерба окружающей среде и здоровью человека, чрезвычайно актуален.
Такой “зелёный» способ получения наночастиц золота придумали исследователи из США. Метод оказался чрезвычайно прост – надо только заварить чай и подсолить его “золотой” солью. Не нужны никакие химические продукты, кроме NaAuCl4. Исследователи поместили листья черного чая Дарджилинг (100 мг) в стаканчик объемом 10 мл, добавили 6 мл воды и 100 мкл 0,1 М водного раствора NaAuCl4.
Уже через полчаса при 25 0 С были получены сферические золотые наночастицы размером 15-45 нм. Их сразу отделили от чайных листьев с помощью фильтра.
Наука и жизнь // Иллюстрации
Фитохимические вещества чая оказались не только эффективными восстановителями золота из соли, но одновременно и стабилизаторами. Они образовали на наночастицах надежное покрытие, препятствующее слипанию. Исследования продемонстрировали очень хорошую стабильность полученных золотых наночастиц в различных биологических растворах и отсутствие токсичности для живых клеток.
Такие нетоксичные наночастицы золота, усиленные фитохимическими веществами чайных листьев с антиканцерогенными свойствами, смогут найти самое широкое применение в диагностике и терапии. На рисунке — схема зелёного синтеза “нано-чай-Au”.
Купить бумажный журнал
Журнал добавлен в корзину.
Оформить заказ
Колибри немножко выпивают
Редакция
АНО Редакция журнала
«Наука и жизнь»
Телефон: +7 495 624-18-35
Факс: +7 495 625-05-90
Свидетельство о регистрации ЭЛ №ФС 77-20213 от 14.12.2004 выдано Федеральной службой по надзору за соблюдением законодательства в сфере массовых коммуникаций и охране культурного наследия.
- Партнеры
- Проекты
- Блоги
- Конкурсы
- Кроссворды
- О журнале
- Фотогалерея
- Поиск
- Файлы cookie
Все материалы сайта принадлежат редакции журнала «Наука и жизнь»
Источник: www.nkj.ru
Золотые наночастицы самопроизвольно образовались в аэрозольных микрокаплях
Химики разработали способ получения золотых наночастиц и нанопроволок без необходимости использования токсичных восстановителей. Метод, основанный на самопроизвольном восстановлении золотохлористоводородной кислоты внутри аэрозольных капель, может быть использован для разработки безопасных для окружающей среды технологий получения наночастиц золота, пишут ученые в Nature Communications.
Получение золотых наночастиц — один из техпроцессов, методики проведения которого разработаны довольно давно, и сейчас уже стали рутинными. В зависимости от внешних условий и типов реагентов можно получать коллоидные растворы, содержащие наночастицы разной формы, размера, а также с разными оптическими свойствами. Однако у наиболее распространенных методов, которые используются сейчас для получения наночастиц золота, есть и недостатки. К таким недостаткам можно отнести, например, необходимость использования токсичных и опасных для окружающей среды реагентов для синтеза (в частности борогидрида натрия) и не всегда возможное управление кинетикой реакции в объемных растворах.
Химики из США и Южной Кореи под руководством Ричарда Зейра (Richard N. Zare) из Стэнфордского университета изучили, как кинетика образования золотых наночастиц изменится в случае проведения реакции не в объемном растворе, а в отдельных аэрозольных каплях, переносимых направленным потоком азота. Для проведения реакции ученые направляли друг на друга потоки двух различных аэрозолей, в результате чего капли сталкивались и смешивались друг с другом. Начали ученые с традиционной схемы: один аэрозоль содержал золотохлористоводородную кислоту, а другой — борогидрид натрия. При столкновении капель происходило восстановление золота до металлического состояния, в результате чего образовывались наночастицы, которые затем потоком газа осаждались на стеклянную подложку.
В отличие от предыдущих аналогичных схем, ученые не использовали для ускорения частиц внешнее электрическое поле, а время реакции меняли, двигая подложку, на которую осаждались капли. В результате такого подхода ученым удалось синтезировать золотые наночастицы размером до семи нанометров за время в несколько десятков микросекунд. Ученые отмечают, что реакция в капле происходит в 100 тысяч раза быстрее, чем в растворе, а также при этом примерно в два раза увеличивается размер образующихся частиц.
Для сравнения ученые провели точно такой же эксперимент, но в нем каплю раствора восстановителя заменили на простую воду. Ожидалось, что в этом случае не произойдет образования золота, однако оказалось, что и такая схема приводит к образованию металлических наночастиц. При тех же условиях, что и в первом эксперименте, происходило образование таких же частиц диаметром семь нанометров, большая часть из которых, правда, собиралась в более крупные агломераты размером около 30 нанометров. Ученые показали, что к образованию наночастиц в этом случае не может приводить столкновение капель между собой или взаимодействие с электронным пучком при микроскопических исследованиях. Также ученые отбросили несколько других возможных причин образования золотых частиц и пришли к выводу, что восстановление в летящих аэрозольных микрокаплях происходит самопроизвольно за счет сочетания нескольких факторов, в частности возможных реакций, проходящих на поверхности раздела вода-воздух.
Если же в такой системе включить еще и внешнее электрической поле, то кроме сферических частиц, в растворе происходит образование золотых нанопроволок диаметром около семи нанометров и длиной более двух микрометров. В результате выстраивания частиц внутри капли под действием электрического поля, они образуют протяженные структуры, которые растут от поверхности вглубь капли.
По словам ученых, полученные ими результаты могут оказаться полезными для дальнейшего использования по нескольким причинам. Во-первых, при использовании восстановителя аэрозольный метод дает возможность управлять кинетикой реакции, меняя скорость образования наночастиц золота на несколько порядков. Во-вторых, метод получения наночастиц без использования восстановителя может лечь в основу технологий, менее вредных для окружающей среды.
Современные технологии позволяют получать золотые наночастицы самых разнобразных форм. Это могут быть, например, нанозвездочки или нанострелки, а с помощью ДНК-оригами ученые научились придавать золотым наночастицам почти любую форму: например галстука-бабочки, креста или буквы Z. Другая группа ученых в качестве вспомогательного реагента для синтеза золотых наночастиц использовала аминокислоту цистеин, благодаря которой удалось получить довольно замысловатые по форме хиральные наночастицы с геометрией свернутых спиральных кубиков.
Источник: nplus1.ru