Гидроксид золота слабое или сильное основание

Кислоты и основания

После прочтения статьи Вы сможете разделять вещества на соли, кислоты и основания. В статье описано, что такое pH раствора, какими общими свойствами обладают кислоты и основания.

Простым языком, кислота — это всё что с H, а основание — c OH. НО! Не всегда. Что бы отличать кислоту от основания необходимо. запомнить их! Сожалею.

Что бы хоть как то облегчить жизнь, три наших друга, Аррениус и Бренстед с Лоури, придумали две теории, которые зовутся их именем.

Как металлы и неметаллы, кислоты и основания — это разделение веществ по схожим свойствам. Первая теория кислот и оснований принадлежала швецкому учёному Аррениусу.

Кислота по Аррениусу — это класс веществ, которые в реакции с водой диссоциируют (распадаются), образовывая катион водорода H + . Основания Аррениуса в водном растворе образуют анионы OH — . Следующая теория в 1923 году была предложена учёными Бренстедом и Лоури. Теория Бренстеда-Лоури определяет кислотами вещества, способные в реакции отдавать протон (протоном в реакциях называют катион водорода). Основания, соответственно, — это вещества, способные принять протон в реакции. Актуальная на данный момент теория — теория Льюиса. Теория Льюиса определяет кислоты как молекулы или ионы, способные принимать электронные пары, тем самым формируя аддукты Льюиса (аддукт — это соединение, образующееся соединением двух реагентов без образования побочных продуктов).

Как легко отличить оксиды,основания ,кислоты и соли

В неорганической химии, как правило, под кислотой имеют ввиду кислоту Бренстеда-Лоури, то есть вещества, способные отдать протон. Если имеют ввиду определение кислоты по Льюису, то в тексте такую кислоту называют кислотой Льюиса. Данные правила справедливы для кислот и оснований.

Диссоциация

Диссоциация – это процесс распада вещества на ионы в растворах или расплавах. Например, диссоциация соляной кислоты — это распад HCl на H + и Cl — .

Свойства кислот и оснований

Кислоты, содержащие водород, в водном растворе выделяют катионы водорода. Основания, содержащие гидроксид-ион, в водном растворе выделяют анион OH — .

Основания, как правило, мыльные на ощупь, кислоты, в большинстве своём, имеют кислый вкус.

При реакции основания со многими катионами формируется осадок. При реакции кислоты с анионами, как правило, выделяется газ.

Часто используемые кислоты:
H2O, H3O + , CH3CO2H, H2SO4, HSO4 − , HCl, CH3OH, NH3

Часто используемые основания:
OH − , H2O, CH3CO2 − , HSO4 − , SO4 2− , Cl −

Сильные и слабые кислоты и основания

Сильные кислоты

Такие кислоты, которые полностью диссоциируют в воде, производя катионы водорода H + и анионы. Пример сильной кислоты — соляная кислота HCl:

HCl(р-р) + H2O(ж) → H3O + (р-р) + Cl — (р-р)

Примеры сильных кислот: HCl, HBr, HF, HNO3, H2SO4, HClO4

Читайте также:
Золото как полезное ископаемое для детей

Неорганика исключения: как запомнить сильные и слабые кислоты | Химия ЕГЭ | Лия Менделеева УМСКУЛ

Список сильных кислот

  • HCl — соляная кислота
  • HBr — бромоводород
  • HI — йодоводород
  • HNO3 — азотная кислота
  • HClO4 — хлорная кислота
  • H2SO4 — серная кислота

Слабые кислоты

Растворяются в воде только частично, например, HF:

Сильную и слабую кислоту можно различить измеряя проводимость растворов: проводимость зависит от количества ионов, чем сильнее кислота тем она более диссоциирована, поэтому чем сильнее кислота тем выше проводимость.

Список слабых кислот

Сильные основания

Сильные основания полностью диссоциируют в воде:

NaOH(р-р) + H2O ↔ NH4

К сильным основаниям относятся гидроксиды металлов первой (алкалины, щелочные металы) и второй (алкалинотеррены, щёлочноземельные металлы) группы.

Список сильных оснований

  • NaOH гидроксид натрия (едкий натр)
  • KOH гидроксид калия (едкое кали)
  • LiOH гидроксид лития
  • Ba(OH)2 гидроксид бария
  • Ca(OH)2 гидроксид кальция (гашеная известь)

Слабые основания

В обратимой реакции в присутствии воды образует ионы OH — :

NH3 (р-р) + H2O ↔ NH + 4 (р-р) + OH — (р-р)

Большинство слабых оснований — это анионы:

F — (р-р) + H2O ↔ HF(р-р) + OH — (р-р)

Список слабых оснований

  • Mg(OH)2 гидроксид магния
  • Fe(OH)2 гидроксид железа (II)
  • Zn(OH)2 гидроксид цинка
  • NH4OH гидроксид аммония
  • Fe(OH)3 гидроксид железа (III)

Сильная кислота и сильное основание

Такая реакция называется нейтрализацией: при количестве реагентов достаточном для полной диссоциации кислоты и основания, результирующий раствор будет нейтральным.

Пример:
H3O + + OH — ↔ 2H2O

Слабое основание и слабая кислота

Общий вид реакции:
Слабое основание(р-р) + H2O ↔ Слабая кислота(р-р) + OH — (р-р)

Сильное основание и слабая кислота

Основание полностью диссоциирует, кислота диссоциирует частично, результирующий раствор имеет слабые свойства основания:

HX(р-р) + OH — (р-р) ↔ H2O + X — (р-р)

Сильная кислота и слабое основание

Кислота полностью диссоциирует, основание диссоциирует не полностью:

NH3 (р-р) + H + ↔ NH4

Диссоциация воды

Диссоциация — это распад вещества на составляющие молекулы. Свойства кислоты или основания зависят от равновесия, которое присутствует в воде:

H2O + H2O ↔ H3O + (р-р) + OH — (р-р)
Kc = [H3O + ][OH — ]/[H2O] 2
Константа равновесия воды при t=25°: Kc = 1.83⋅10 -6 , также имеет место следующее равенство: [H3O + ][OH — ] = 10 -14 , что называется константой диссоциации воды. Для чистой воды [H3O + ] = [OH — ] = 10 -7 , откуда -lg[H3O] = 7.0.

Данная величина (-lg[h3O]) называется pH — потенциал водорода. Если pH < 7, то вещество имеет кислотные свойства, если pH >7, то вещество имеет основные свойства.

Читайте также:
Сколько стоил грамм золота в 1988 году

Способы определения pH

Инструментальный метод

Специальный прибор pH-метр — устройство, трансформирующее концентрацию протонов в растворе в электрический сигнал.

Индикаторы

Вещество, которое изменяет цвет в некотором интервале значений pH в зависимости от кислотности раствора, используя несколько индикаторов можно добиться достаточно точного результата.

Соль

Соль — это ионное соединение образованное катионом отличным от H + и анионом отличным от O 2- . В слабом водном растворе соли полностью диссоциируют.

Что бы определить кислотно-щелочные свойства раствора соли, необходимо определить, какие ионы присутствуют в растворе и рассмотреть их свойства: нейтральные ионы, образованные из сильных кислот и оснований не влияют на pH: не отдают ионы ни H + , ни OH — в воде. Например, Cl — , NO — 3, SO 2- 4, Li + , Na + , K + .

Анионы, образованные из слабых кислот, проявляют щелочные свойства (F — , CH3COO — , CO 2- 3), катионов с щелочными свойствами не существует.

Все катионы кроме металлов первой и второй группы имеют кислотные свойства.

Буфферный раствор

Растворы, которые сохраняют уровень pH при добавлении небольшого количества сильной кислоты или сильного основания, в основном состоят из:

  • Смесь слабой кислоты, соответствующей соли и слабого основания
  • Слабое основание, соответствующая соль и сильная кислота

Для подготовки буфферного раствора определённой кислотности необходимо смешать слабую кислоту или основание с соответствующей солью, при этом необходимо учесть:

  • Интервал pH в котором буфферный раствор будет эффективен
  • Ёмкость раствора — количество сильной кислоты или сильного основания, которые можно добавить не повлияв на pH раствора
  • Не должно происходить нежелаемых реакций, которые могут изменить состав раствор

Источник: k-tree.ru

Классификация гидроксидов и оснований

ЕГЭ по химии

Для того, чтобы разбираться в классификации, сначала нужно понять, что такое основание и чем оно отличается от других веществ. Перечислим несколько оснований:

NaOH – гидроксид натрия

Ca(OH)2 – гидроксид кальция

Fe(OH)2 – гидроксид железа

Все три примера относятся к основаниям, но в названии значится, что это гидроксиды. В чем разница между этими понятиями?

Гидроксиды – это вещества, в состав которых какой-либо элемент имеет связь с гидроксильной группой (‒ОН). Но не все гидроксиды – это основания: кислоты, например, тоже являются гидроксидами.

Классификация гидроксидов и оснований

Основные и ксилотные кидроксиды

Таким образом, все основания – это гидроксиды, но не все гидроксиды – это основания. Ввиду того, что группа гидроксидов очень разнообразна, её принято делить на три подгруппы.

Таб. «Классификация гидроксидов»

Гидроксид

Основный

Амфотерный

Кислотный

В состав входят гидроксогруппа (-ы) и металл в степени окисления «+1» или «+2» за исключением Zn(OH)2, Be(OH)2, Sn(OH)2, Pb(OH)2

Читайте также:
Что входит в состав голубого золота

В состав входят гидроксогруппы и металл в степени окисления «+3» или «+4», а также Zn(OH)2, Be(OH)2, Sn(OH)2, Pb(OH)2

В состав входят гидроксогруппа (-ы) и неметалл, либо гидроксогруппа (-ы) и металл в степени окисления «+5», «+6» или «+7»

Э – элемент. К основным гидроксидам так же относят гидроксид аммония – NH4OH, хотя правильнее его записывать как гидрат аммония – NH3·H2O.

Амфотерные гидроксиды имеют промежуточный характер между основными и кислотными, поэтому имеют обе формы написания.

Задание в формате ЕГЭ с ответом:

Среди предложенных формул веществ, расположенных в пронумерованных ячейках, выберите формулы: амфотерного гидроксида, двухосновного основания, кислотного гидроксида. Запишите соответствующую последовательность цифр.

1) NaOH 2) NH3*H2O 3) HMnO4
4) Be(OH)2 5) KMnO4 6) Na[Al(OH)4]
7) MnO2 8) Ca(OH)2 9) KOH

Пример задания из КИМ ЕГЭ:

Среди перечисленных веществ выберите три формулы, соответствующие амфотерным гидроксидам:

Задание по образцу ФИПИ:

Кислотный гидроксид может образовать следующий элемент:

  1. натрий
  2. мышьяк
  3. алюминий
  4. хлор
  5. молибден
  6. цинк

Кислотные гидроксиды образуют неметаллы в любой степени окисления, поэтому подходит мышьяк и хлор, а также металлы в степени окисления +5 и выше, поэтому подходит молибден – он находится в шестой группе Периодической системы, значит, может образовать ион со степенью окисления +6

Перевод формулы амфотерного гидроксида из основной формы в кислотную.

  1. Возьмём любой амфотерный гидроксид: Al(OH)3;
  2. Поменяем порядок элементов на кислотную форму (водород → элемент → кислород) без учета индексов основной формы: HAlO;
  3. Расставим степени окисления:
    + +3 ‒2
    H Al O
  4. Молекула должна быть электронейтральной (количество положительных и отрицательных зарядов должно быть равным), для этого кислорода должно быть в два раза больше, поэтому после него ставим индекс «2»: HAlO2
  1. Zn(OH)2;
  2. HZnO
  3. + +2 ‒2
    H Zn O
  4. Согласно этой формуле после кислорода придется поставить индекс «1,5», но индексы могут быть выражены только целыми числами, поэтому сначала приведем количество положительных зарядов к четному значению, домножив элемент с нечетной степенью окисления (водород) на 2, получим формулу: H2ZnO, она пока всё равно не является электронейтральной, сумма её зарядов может быть выражена следующим уравнением: +2+2‒2 = +2, а должно быть = 0

H2

Zn

O

Чтобы количество отрицательных зарядов тоже стало равно четырем, количество кислорода нужно умножить вдвое, поставив после него индекс «2». Получается формула H2ZnO2

Таб. «Общие формулы амфотерных гидроксидов в зависимости от степени окисления металла в них»

Классификация основных гидроксидов (оснований) по количеству гидроксо-групп.

Основания

Однокислотные

Двукислотные

Однокислотные основания при диссоциации образуют лишь один гидроксид ион:

Двукислотные основания при диссоциации образуют два гидроксид-иона:

Основные гидроксиды не могут быть трёхкислотными или четырёхкислотными, так как в них металл будет иметь степень окисления «+3» или «+4», а это уже будет не основанием, а амфотерным гидроксидом.

Читайте также:
Гномы готовы отдать слиток золота что же это

Почему количество гидроксильных групп называется кислотностью? Потому что на нейтрализацию оснований требуется протон водорода из кислоты. Для нейтрализации однокислотных оснований потребуется один протон водорода, а на нейтрализацию двукислотного основания – два протона водорода и так далее. Например:

Молекулярное уравнение (МУ): NaOH + HCl = NaCl + H2O

Полное ионное уравнение (ПИУ): Na + + OH ‒ + H + + Cl ‒ = Na + + Cl ‒ + H2O

Сокращенное ионное уравнение (СИУ): OH ‒ + H + = H2O

На нейтрализацию однокислотного основания потребовался один протон водорода из соляной кислоты.

Классификация оснований по силе

Основания также можно поделить на сильные и слабые. Сильные диссоциируют очень быстро, даже двухосновные распадаются на ионы на столько быстро, что можно не учитывать ступенчатость этого процесса:

Слабые основания диссоциируют очень медленно, ступенчато:

Fe(OH)2 ↔ FeOH + + OH ‒ (первая ступень)

FeOH + ↔ Fe 2+ + OH ‒ (вторая ступень)

Сильные основания растворимы или малорастворимы (исключение: гидроксид аммония будучи растворимым остаётся слабым основанием) и называются щелочами. Слабые основания нерастворимы.

Таб. «Сильные и слабые основания»

Основания

Сильные (щелочи)

Слабые

Нерастворимы (искл. NH4OH)

Гидроксиды металлов IA-подгруппы, а также кальция, стронция и бария

Источник: onlineclass.space

Гидроксид

Основание.Гидроксид меди

Основания — называют электролиты, в растворах которых отсутствуют анионы, кроме гидроксид-ионов (анионы — это ионы, которые имеют отрицательный заряд, в данном случае — это ионы OH — ). Названия оснований состоят из трёх частей: слова гидроксид, к которому добавляют название металла (в родительном падеже). Например, гидроксид меди (Cu(OH)2). Для некоторых оснований могут используются старые названия, например гидроксид натрия (NaOH) — натриевая щелочь.

Едкий натр, гидроксид натрия, натриевая щелочь, каустическая сода — всё это одно и тоже вещество, химическая формула которого NaOH. Безводный гидроксид натрия — это белое кристаллическое вещество. Раствор — прозрачная жидкость, на вид ничем не отличимая от воды. При использовании будьте осторожны! Едкий натр сильно обжигает кожу!

В основу классификации оснований положена их способность растворяться в воде. От растворимости в воде зависят некоторые свойства оснований. Так, основания, растворимые в воде, называют щелочью. К ним относятся гидроксиды натрия (NaOH), гидроксид калия (KOH), лития (LiOH), иногда к их числу прибавляют и гидроксид кальция (Ca(OH)2)), хотя на самом деле — это малорастворимое вещество белого цвета (гашенная известь).

Получение оснований

Получение оснований и щелочей может производиться различными способами. Для получения щелочи можно использовать химическое взаимодействие металла с водой. Такие реакции протекают с очень большим выделением тепла, вплоть до воспламенения (воспламенение происходит по причине выделения водорода в процессе реакции).

негашенная известь

Но в промышленности эти методы не нашли практического значения, конечно кроме получения гидроксида кальция Ca(OH)2. Получение гидроксида натрия и гидроксида калия связано с использованием электрического тока. При электролизе водного раствора хлорида натрия или калия на катоде выделяются водород, а на аноде — хлор, при этом в растворе, где происходит электролиз, накапливается щелочь!

Читайте также:
Пин код armored Warfare на золото

KCl + 2H2O →2KOH + H2 + Cl2 (эта реакция проходит при пропускании электрического тока через раствор).

Нерастворимые основания осаждают щелочами из растворов соответствующих солей.

Свойства оснований

Щелочи устойчивы к нагреванию. Гидроксид натрия можно расплавить и расплав довести до кипения, при этом он разлагаться не будет. Щелочи легко вступают в реакцию с кислотами, в результате которого образуется соль и вода. Эта реакция ещё носит название — реакция нейтрализации

KOH + HCl → KCl + H2O

Щёлочи взаимодействуют с кислотными оксидами, в результате которой образуется соль и вода.

Нерастворимые основания, в отличии от щелочей, термически не стойкие вещества. Некоторые из них, например, гидроксид меди, разлагаются при нагревании,

Cu(OH)2 + CuO → H2O
другие — даже при комнатной температуре (например, гидроксид серебра — AgOH).

Нерастворимые основания взаимодействуют с кислотами, реакция происходит лишь в том случае, если соль, которая образуется при реакции, растворяется в воде.

Реакция щелочного металла с водой. Образование щелочи и окраска индикатора pH

Щелочные металлы — такие металлы, которые при взаимодействии с водой образуют щелочь. К типичному представителю щелочных металлов относится натрий Na. Натрий легче воды, поэтому его химическая реакция с водой происходит на её поверхности. Активно растворяясь в воде, натрий вытесняет из неё водород, при этом образуя натриевую щелочь (или гидроксид натрия) — едкий натр NaOH. Реакция протекает следующим образом:

Подобным образом ведут себя все щелочные металлы. Если перед началом реакцией в воду добавить индикатор фенолфталеин, а затем опустить в воду кусочек натрия, то натрий будет скользить по воде, оставляя за собой ярко розовый след образовавшейся щелочи (щелочь окрашивает фенолфталеин в розовый цвет)

Гидроксид железа

Гидроксид железа является основанием. Железо, в зависимости от степени его окисления, образует два разных основания: гидроксид железа, где железо может иметь валентности (II) — Fe(OH)2 и (III) — Fe(OH)3. Как и основания, образованные большинством металлов, оба основания железа не растворимы в воде.

Гидроксид железа 3-х валентного

Гидроксид железа (II) — белое студенистое вещество (осадок в растворе), которое обладает сильными восстановительными свойствами. К тому же, гидроксид железа (II) очень не стойкий. Если к раствору гидроксида железа (II) добавить немного щёлочи, то выпадет зелёный осадок, который достаточно быстро темнеет о превращается в бурый осадок железа (III).

Гидроксид железа (III) имеет амфотерные свойства, но кислотные свойства у него выражены значительно слабее. Получить гидроксид железа (III) можно в результате химической реакции обмена между солью железа и щёлочью. Например

Английский

Перейти на английский
Bases. Properties of bases. Alkali

Источник: www.kristallikov.net

Рейтинг
Загрузка ...