Рассматривая график плавления и отвердевания льда в прошлом уроке, мы выяснили, что во время процесса плавления температура льда не меняется. Температура продолжит расти только тогда, когда лед полностью перейдет в жидкость. То же самое мы наблюдали и при кристаллизации воды.
Но, когда лед плавится, он все равно получает энергию. Ведь во время плавления мы не выключаем горелку — лед получает какое-то количество теплоты от сгорающего в спиртовке (или другом нагревателе) топлива. Куда уходит эта энергия? Вы уже знаете закон сохранения энергии — энергия не может исчезнуть.
На данном уроке мы подробно рассмотрим, что происходит во время процесса плавления, как изменяется энергия и температура. Это позволит нам перейти к новому определению — удельной теплоте плавления.
Изменение внутренней энергии и температуры при плавлении
Так на что же уходит энергия, которую мы сообщаем телу, при плавлении?
Вы знаете, что в кристаллических твердых телах атомы (или молекулы) расположены в строгом порядке (рисунок 1). Они не двигаются так активно, как в газах или жидкостях. Тем не менее, они также находятся в тепловом движении — колеблются.
Кристаллизация
Взгляните еще раз на график плавления и отвердевания льда (рисунок 2).
Нагревание льда идет на участке AB. В это время увеличивается средняя скорость движения его молекул. Значит, возрастает и их средняя кинетическая энергия и температура. Размах колебаний атомов (или молекул) увеличивается.
Так происходит то того момента, пока нагреваемое тело не достигнет температуры плавления.
При температуре плавления нарушается порядок в расположении частиц в кристаллах.
Так вещество начинает переход из твердого состояния в жидкое.
Значит, энергия, которую получает тело после достижения температуры плавления, расходуется на разрушение кристаллической решетки. Поэтому температура тела не повышается — участок графика BC.
Изменение внутренней энергии и температуры при отвердевании
При отвердевании происходит обратное.
Средняя скорость движения молекул и их средняя кинетическая энергия в жидкости (расплавленном веществе) уменьшается при охлаждении. Этому соответствует участок графика DE на рисунке 2.
Теперь силы притяжения между молекулами могут удерживать их друг около друга. Расположение частиц становится упорядоченным — образуется кристалл (участок графика EF).
Куда расходуется энергия, которая выделяется при кристаллизации? Температура тела остается постоянной во время этого процесса. Значит, энергия расходуется на поддержание этой температуры, пока тело полностью не отвердеет.
Теперь мы можем сказать, что
При температуре плавления внутренняя энергия вещества в жидком состоянии больше внутренней энергии такой же массы вещества в твёрдом состоянии.
Эта избыточная энергия выделяется при кристаллизации и поддерживает температуру тела на одном уровне во время всего процесса отвердевания.
Удельная теплота плавления
Опытным путем доказано, что для превращения твердых кристаллических тел одинаковой массы в жидкость необходимо разное количество теплоты. Тела при этом рассматриваются при их температурах плавления.
Удельная теплота плавления — это физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой $1 space кг$, чтобы при температуре плавления полностью перевести его в жидкое состояние.
- обозначается буквой $lambda$
- единица измерения — $1 frac$
Удельная теплота плавления некоторых веществ
В таблице 1 представлены экспериментально полученные величины удельной теплоты плавления для некоторых веществ.
Вещество | $lambda, frac$ | Вещество | $lambda, frac$ |
Алюминий | $8.9 cdot 10^5$ | Сталь | $0.84 cdot 10^5$ |
Лёд | $3.4 cdot 10^5$ | Золото | $0.67 cdot 10^5$ |
Железо | $2.7 cdot 10^5$ | Водород | $0.59 cdot 10^5$ |
Медь | $2.1 cdot 10^5$ | Олово | $0.59 cdot 10^5$ |
Парафин | $1.5 cdot 10^5$ | Свинец | $0.25 cdot 10^5$ |
Спирт | $1.1 cdot 10^5$ | Кислород | $0.14 cdot 10^5$ |
Серебро | $0.87 cdot 10^5$ | Ртуть | $0.12 cdot 10^5$ |
Таблица 1. Удельная теплота плавления некоторых веществ (при нормальном атмосферном давлении)
Удельная теплота плавления золота составляет $0.67 cdot 10^5 frac$. Что это означает?
Для того чтобы расплавить кусок золота массой $1 space кг$, взятого при температуре $1064 degree C$ (температура плавления золота), до жидкого состояния, нам потребуется затратить $0.67 cdot 10^5 space Дж$ энергии.
Опытным путем доказано, что
при отвердевании кристаллического вещества выделяется точно такое же количество теплоты, которое поглощается при его плавлении.
То есть, при кристаллизации расплавленного золота массой $1 space кг$ выделится $0.67 cdot 10^5 space Дж$ энергии.
Расчет количества теплоты, необходимого для плавления или отвердевания вещества
Чтобы вычислить количество теплоты $Q$, необходимое для плавления кристаллического тела массой $m$, взятого при его температуре плавления и нормальном атмосферном давлении, нужно удельную теплоту плавления $lambda$ умножить на массу тела $m$:
$Q = lambda m$.
Энергетические условия кристаллизации
Всякое вещество может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Переход из одного состояния в другое происходит при определенной температуре, называемой температурой плавления или кипения.
В газах отсутствует закономерность в расположении частиц, частицы движутся хаотически, причем газ стремится занять возможно больший объем. Твердые кристаллические тела имеют правильное строение, при котором атомы и ионы находятся в узлах кристаллических решеток (так называемый ближний порядок), а отдельные ячейки и блоки определенным образом ориентированы по отношению друг к другу (дальний порядок). В жидкостях определенная ориентировка распространяется не на весь объем, а лишь на небольшое число атомов, образующих сравнительно устойчивые группировки или флуктуации. С понижением температуры устойчивость флуктуации увеличивается и они проявляют способность к росту. Таким образом, для жидкостей характерен только ближний порядок расположения атомов.
По мере увеличения температуры твердого тела растет подвижность атомов в узлах решетки, амплитуда колебаний увеличивается и при достижении определенной температуры, называемой температурой плавления, атомы вырываются из узлов и решетка разрушается с образованием жидкой фазы. Температура плавления – важная константа и входит во все справочники: температура плавления ртути минус 38,9; свинца 327; цинка 419; алюминия 660; меди 1083; железа 1536°С и т.д.
Противоположная картина наблюдается при охлаждении жидкости и ее последующем затвердевании. При охлаждении жидкости, наоборот, подвижность атомов падает и вблизи температуры плавления образуются группировки атомов, в которых атомы упакованы, как в кристаллах. Эти группировки являются центрами кристаллизации или зародышами. При достижении температуры плавления – затвердевания, вновь образуется кристаллическая решетка и металл переходит в твердое состояние.
Переход металлов из жидкого в твердое состояние при определенной температуре называется кристаллизацией. Рассмотрим энергетические условия процесса кристаллизации.
Энергетическое состояние любой системы характеризуется определенным запасом внутренней энергии, которая складывается из энергии движения молекул, атомов, электронов, внутриядерной энергии, энергии упругих искажений кристаллической решетки и других видов энергии.
Свободной энергией является такая составляющая внутренней энергии, которая в изотермических условиях может быть превращена в работу. Свободная энергия изменяет свою величину при изменении температуры, плавлении, полиморфных превращениях и т. д. F = U – TS, где F – свободная энергия, U – полная внутренняя энергия системы, Т – температура, S – энтропия.
Согласно второму закону термодинамики, всякая система стремится к минимальному значению свободной энергии. Любой самопроизвольно текущий процесс идет только в том случае, если новое состояние более устойчиво, т. е. обладает меньшим запасом свободной энергии. Например, шарик стремится скатиться вниз по наклонной плоскости, понизив при этом свою свободную энергию, естественно, что самопроизвольное возвращение шарика вверх по наклонной плоскости невозможно, так как при этом произойдет увеличение его свободной энергии.
Процесс кристаллизации подчиняется этому же закону. Металл затвердевает, если меньшей свободной энергией обладает твердое состояние, и плавится в том случае, когда меньшей свободной энергией обладает жидкое состояние.
Изменение свободной энергии жидкого и твердого состояния при изменении температуры приведено на рис. 9. С повышением температуры величина свободной энергии обоих состояний уменьшается, но закон изменения свободной энергии различен для жидкого и твердого состояний вещества.
Различают теоретическую и фактическую температуру кристаллизации. Ts – теоретическая или равновесная температура кристаллизации, при которой F ж = F тв. При этой температуре равновероятно существование металла как в жидком, так и в твердом состояниях.
Реальная же кристаллизация начнется только тогда, когда этот процесс будет термодинамически выгоден системе, при условии Δ F = F ж – Ттв, для чего необходимо некоторое переохлаждение. Температура, при которой практически идет кристаллизация, называется фактической температурой кристаллизации Ткр. Разность между теоретической и фактической температурой кристаллизации называется степенью переохлаждения: Δ T = = Ts – Т кр. Чем больше степень переохлаждения Δ T, тем больше разность свободных энергий Δ F, тем интенсивнее будет идти кристаллизация.
Термические кривые, характеризующие процесс охлаждения с различными скоростями, приведены на рис. 10. При медленном охлаждении, соответствующем кривой иъ степень переохлаждения невелика и кристаллизация протекает при температуре, близкой к равновесной.
Горизонтальная площадка на термической кривой объясняется выделением скрытой теплоты кристаллизации, которая компенсирует отвод тепла. С ростом скорости охлаждения (кривые υ2, υ3) степень переохлаждения растет и процесс кристаллизации протекает при все более понижающейся температуре. Помимо скорости охлаждения, степень переохлаждения зависит от чистоты металла. Чем чище металл, тем выше степень переохлаждения.
Источник: studopedia.su
Одинаковы ли внутренние энергии данной массы золота, находящегося в твердом и расплавленном состояниях? Температуры обоих состояний одинаковы.
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
- Обратная связь
- Правила сайта
Источник: www.soloby.ru