Физики из США неожиданно обнаружили, что падающие на поверхность золотой фольги фотоны притягивают свободные электроны, хотя закон сохранения импульса предсказывает другое направление тока. Чтобы получить «правильное» направление тока, ученым пришлось заполнить вакуумную камеру воздухом и облучить фольгу p-поляризованным лучом. Таким образом, большинство экспериментов по измерению аналогичного потока электронов придется пересмотреть. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics, препринт работы выложен на arXiv.org.
Закон сохранения импульса распространяется не только на механические столкновения тел, но и на отражение света от полированной поверхности металла. Проще всего смотреть на такое отражение как на механическое столкновение фотонов-частиц с частицами металла, однако аккуратный расчет в рамках классической электродинамики приводит к тому же закону сохранения. Очевидное следствие этого закона сохранения — это давление луча света, которое может сдвинуть с места тонкую металлическую пластинку. В начале XX века этот эффект исследовали сотни независимых экспериментаторов.
РЕЛИКТОВОЕ ИЗЛУЧЕНИЕ. ФАКТЫ И ТЕОРИЯ
Особенно интересно рассмотреть рассеяние инфракрасных волн на поверхности благородных металлов — золота и серебра. Поскольку проводимость этих металлов почти целиком обусловлена свободными электронами, логично предположить, что эти электроны охотнее всего взаимодействуют со светом, а потом передают полученный импульс всему кристаллу. Следовательно, в небольшом слое около поверхности проводника должен течь небольшой ток, состоящий из отталкиваемых электронов. При этом из закона сохранения импульса следует, что поток электронов (не путать с электрическим током, который по определению течет в противоположную сторону) направлен перпендикулярно поверхности вдоль падающего луча света. Большинство экспериментов подтверждает это наивное соображение, однако в некоторых опытах направление тока получается обратным.
Группа физиков под руководством Генри Лезека (Henri Lezec) объяснила это противоречие и экспериментально показала, что при более внимательном рассмотрении интуитивное соображение оказывается неверным — падающие лучи света не отталкивают, а притягивают свободные электроны! Если металл находится в вакууме, то поток электронов пропорционален импульсу падающего пучка света и не зависит от поляризации света (что совпадает с теорией), но направлен к поверхности образца (что противоречит теории). Если же переместить ту же пластинку в воздух, то на поток электронов наложится ток от молекулярных адсорбатов, и результирующее направление тока изменится на противоположное. Таким образом, большинство экспериментов по измерению потока электронов придется пересмотреть.
В основе эксперимента, поставленного физиками, лежала тонкая отполированная золотая фольга (толщиной всего 35 нанометров), напыленная на поверхность кварцевого стекла. В качестве источника света ученые выбрали титан-сапфировый инфракрасный лазер с длиной волны 800 нанометров, энергией импульса пять миллиджоуль и продолжительностью импульса около 20 пикосекунд. С помощью поляризационных пластинок физики могли изменять поляризацию конечного пучка, падающего на фольгу.
Пульсары. Квазары. Нейтронные звезды.
Кроме того, направляя пучок под разными углами, исследователи регулировали его поперечный импульс, а вместе с ним и величину ожидаемого потока электронов. Чтобы измерить едва заметное напряжение, которое генерирует этот поток, ученые подключили фольгу к усилителю.
Чтобы увеличить импульс пучка, предварительно прошедшего сквозь стекло, ученые отшлифовали стекло до полукруглой формы. Наконец, ученые поместили прибор в вакуумную камеру, откачали воздух до давления 10−8 атмосфер и несколько часов просвечивали его ультрафиолетовой лампой, чтобы удалить из камеры остатки воды. На втором этапе наблюдений та же камера заполнялась воздухом при нормальном давлении, влажности 20 процентов и температуре 20 градусов Цельсия. Авторы статьи подчеркивают, что образованием квазичастиц-плазмонов в такой простой системе можно пренебречь, целиком сосредоточившись на потоке электронов.
Затем ученые измерили коэффициент передачи напряжения для разных конфигураций падающего луча, то есть коэффициент пропорциональности между генерируемым напряжением и средним импульсом падающих фотонов. Всего физики рассмотрели восемь случаев, которые определялись стороной пленки (чистой или «остекленной»), окружающей средой (вакуум или воздух) и поляризацией света (s- или p-поляризация). Теоретическое значение коэффициента, рассчитанное в рамках классической электродинамики, должно быть во всех случаях одинаковым и примерно равным −2,5 гигавольта на ньютон-секунду. На практике значения совпали с этим значением по порядку, но получились во всех восьми случаях разные. Более того, правильный знак физики получили только для одного случая — «голого», «неостекленного» бока пленки, помещенного в воздух и облученного p-волной.
Наконец, ученые попытались теоретически объяснить перепады коэффициента передачи напряжения. Во-первых, для этого физики заметили, что коэффициент зависит от окружения только при облучении p-поляризованной волной (в случае s-волны он изменяется всего на несколько процентов).
Во-вторых, исследователи пронаблюдали за изменением коэффициента во время медленного заполнения камеры воздухом. После этого предварительного анализа ученые решили, что, вероятнее всего, зависимость можно списать на поглощение воды поверхностью золотой пленки. Впрочем, в будущем физики собираются исследовать этот вопрос более аккуратно. Как минимум, им придется объяснить «неправильный» знак коэффициента передачи напряжения.
В ноябре 2017 года мы писали о еще одном контринтуитивном эффекте, сопровождающем отражение света. Как правило, если посветить пучком света с круговой поляризацией на зеркало, поляризация луча изменится на противоположную. Однако американские физики построили необычное многослойное зеркало, которое не изменяет поляризацию падающих лучей: благодаря периодическому массиву несимметричных отверстий в одном из слоев, поляризованный свет, закрученный в одну сторону, полностью поглощается, а закрученный в другую — отражается с сохранением поляризации.
Источник: newsland.com
Эксперимент с фотонами против теории давления света
Физики из США обнаружили, что падающие на поверхность золотой фольги фотоны притягивают свободные электроны, хотя закон сохранения импульса предсказывает другое направление тока. (Следствие этого закона пресловутое давление луча света.) Статья опубликована в Physical Review Letters, кратко о ней сообщаетPhysics, препринт работы выложен на arXiv.org.
Особенно интересно рассмотреть рассеяние инфракрасных форонов на поверхности благородных металлов — золота и серебра. Поскольку проводимость этих металлов обусловлена свободными электронами то теория предсказывает, что эти электроны должны взаимодействовать с фотонами, а потом должны передать полученный импульс всему кристаллу. Следовательно, в небольшом слое около поверхности проводника должен течь небольшой ток, состоящий из отталкиваемых электронов. Поток электронов должен быть направлен перпендикулярно поверхности вдоль падающего луча света.
Группа физиков под руководством Генри Лезека (Henri Lezec) экспериментально показала, что при более внимательном рассмотрении теоретические соображения оказывается неверным — падающие лучи света не отталкивают, а притягивают свободные электроны. Если металл находится в вакууме, то поток электронов пропорционален импульсу падающего пучка света и не зависит от поляризации света (что совпадает с теорией), но направлен к поверхности образца (что противоречит теории). Если же переместить ту же пластинку в воздух, то на поток электронов наложится ток от молекулярных адсорбатов, и результирующее направление тока изменится на противоположное. Таким образом, большинство экспериментов по измерению потока электронов придется пересмотреть.
В основе эксперимента, поставленного физиками, лежала тонкая отполированная золотая фольга (толщиной всего 35 нанометров), напыленная на поверхность кварцевого стекла. В качестве источника света ученые выбрали инфракрасный лазер с длиной волны 800 нанометров, энергией импульса пять миллиджоуль и продолжительностью импульса около 20 пикосекунд.
С помощью поляризационных пластинок физики могли изменять поляризацию конечного пучка, падающего на фольгу. Кроме того, направляя пучок под разными углами, исследователи регулировали его поперечный импульс, а вместе с ним и величину ожидаемого потока электронов. Чтобы измерить едва заметное напряжение, которое генерирует этот поток, ученые подключили фольгу к усилителю.
Чтобы увеличить импульс пучка, предварительно прошедшего сквозь стекло, ученые отшлифовали стекло до полукруглой формы. Наконец, ученые поместили прибор в вакуумную камеру, откачали воздух до давления 10 −8 атмосфер и несколько часов просвечивали его ультрафиолетовой лампой, чтобы удалить из камеры остатки воды. На втором этапе наблюдений та же камера заполнялась воздухом при нормальном давлении, влажности 20 процентов и температуре 20 градусов Цельсия.
Затем ученые измерили коэффициент передачи напряжения для разных конфигураций падающего луча, то есть коэффициент пропорциональности между генерируемым напряжением и средним импульсом падающих фотонов. Всего физики рассмотрели восемь случаев, которые определялись стороной пленки (чистой или «остекленной»), окружающей средой (вакуум или воздух) и s— или p-поляризацией. Теоретическое значение коэффициента, в рамках классической электродинамики, должно быть во всех случаях одинаковым и примерно равным −2,5 гигавольта на ньютон-секунду. На практике значения совпали с этим значением по порядку, но получились во всех восьми случаях разные. Более того, правильный знак физики получили только для одного случая — «голого», «неостекленного» бока пленки, помещенного в воздух и облученного p-фотонами.
Теоретические упражнения по объяснению факта вполне можно опустить, ибо в них кроме словоблудия ничего нет. Реально фотоны движут частицы вещества только когда объединены с ними. И в данном случае фотоны объединяясь со связанными электронами металла создают потенциальную яму в месте контакта куда и движутся свободные электроны.
Такая же, по сущности, как с опмсанными выше электронами картина уже была получена U. Leonhardt (Институт имени Вейцмана в Реховоте, Израиль) и его коллегами из Университета имени Сунь Ятсена в Гуанчжоу (Китай). Они выполнили эксперимент по воздействию на поверхность жидкости световым пучком. Источник New J. Phys. 17 053035 (2015)
http://dx.doi.org/10.1088/1367-2630/17/5/053035
Было выяснено, что значение имеет ширина луча и глубина сосуда с жидкостью. Когда исследователи использовали в своём эксперименте узкий сфокусированный луч, — на поверхности воды и минерального масла появлялась выпуклость.
Широкий пучок дал вогнутость поверхности для воды и для минерального масла.
Теорию под это подвели такую, что яко бы правы оказались одновременно оба теоретика столетней давности Г. Минковский и М. Абрагам, в 1908 году и 1909 году соответственно, предложившие взаимоисключающие теории прогибания и вспучивания поверхности жидкости под влиянием света.
Китайские физики, ведущим из которых был Вэйлун Шэ (Weilong She) вместо воды использовали отрезок оптоволокна длиной около 1,5 миллиметров и шириной в 650 нанометров.
Физики рассчитывали, что вес оптоволокна окажется достаточно мал для того, чтобы движение кончика отрезка, вызванного прохождением луча света, можно было заметить. После начала эксперимента камера фотографировала отрезок оптоволокна с частотой 10 снимков в секунду. Анализ фотографий показал, что свет «заставлял» кончик отрезка отклоняться в направлении, противоположном направлению распространения света. Таким образом ученые решили, что смогли подтвердить правильность теории Абрагама.
Источник: round-the-world.org
—>Решение задач и примеров —>
22.10.2022
Для Беларуси возможно оплачивать только банковской картой выпущенной в России или через Webmoney Z.
Также для Беларуси можно оплачивать Банковской картой («Карта Весь мир»), QIWI, ЮMoney перейдя в раздел Решения заданий (digiseller) в меню сайта
23.08.2021
В Digiseller можно найти все решения, что и на fizmathim.ru Перейти в Магазин на Digiseller
Можно воспользоваться формой поиска по первым 3-4 словам. Способы оплаты: Банковская карта (РФ)(Visa/MasterCard/Мир) Казахстан (выбираете «Карта KZ» или «Карта RU/UA/KZ/Asia»), QIWI, ЮMoney, Webmoney, Unionpay, Alipay, Скины Steam
26.04.2019
— Все задачи оформлены в текстовом редакторе Microsoft Word, в PDF формате рассылаются решения отдельно.
— Ссылки действительны в течение 24 часов до первой попытки скачать (90 минут с момента первого скачивания).
05.02.2019
— При добавлении товаров в корзину на сумму выше 250 руб. и оформлении заказа активируется 5 % скидка на оплату.
— Ссылка на скачивание задач, приходит на указанный вами почтовый ящик при оформлении заказа и его оплаты. Дополнительная рассылка оплаченных заказов на E-mail производится в течение нескольких минут/часов, тема писем имеет вид «Заказ xxxxx». —>
—> —>Форма входа —>
Нa поверхность металла падает излучение с длиной волны 280 нм При некотором задерживающем напряжении фототок прекращается При изменении длины волны излучения на 20 нм задерживающий потенциал пришлос
—> Купить задачу
Решенная задача по физике.
Раздел: Оптика. Квантовая оптика
Условие задачи:
Нa поверхность металла падает излучение с длиной волны 280 нм. При некотором задерживающем напряжении фототок прекращается. При изменении длины волны излучения на 20 нм задерживающий потенциал пришлось увеличить на 0,34 В. Определите заряд электрона, считая постоянную Планка и скорость света известными.
Подробное решение. Оформлено в Microsoft Word 2003. (Задание решено с использованием редактора формул)
Источник: fizmathim.ru