Всё, что нас окружает — предметы обихода, живая и неживая природа, состоит из атомов. Образуя химические связи, атомы простых веществ могут создавать более сложные вещества, например, два атома водорода и один атом кислорода образуют воду, без которой была бы невозможна жизнь на Земле. На сегодняшний день известно 118 химических элементов, но так было не всегда.
Источник изображения: allevents.in
Изначально в природе не было никаких химических элементов. Новорожденная Вселенная представляла собой нечто вроде бульона из глюонов и кварков, которые постепенно объединялись в протоны и нейтроны — будущие атомные ядра всех известных нам веществ.
Затем последовало их слияние, в результате чего в космосе появились первые химические элементы — гелий, водород и ничтожно малое количество лития. К этому времени Вселенная уже остыла настолько, что новые элементы более не могли образовываться.
Но откуда тогда взялось всё остальное?
Чтобы привнести разнообразие в таблицу Менделеева, Вселенной потребовались космические реакторы — звезды. Начиная от звездных карликов в десять раз меньше Солнца и заканчивая сверхгигантами вроде Ригеля, все звезды начинают свой путь одинаково.
Нихоний — САМЫЙ ДОРОГОЙ МЕТАЛЛ ВО ВСЕЛЕННОЙ!
Звезды — это огромные космические реакторы.
Сжигая в своих недрах самый распространенный элемент водород, они превращают его в гелий, выделяя при этом лучистую энергию. Старея, растратившие водородное топливо небольшие звезды становятся красными гигантами, в которых возникают благоприятные условия для горения уже гелия. Из него в процессе синтеза образуется углерод и в относительно малых объемах кислород. На этом роль небольших звезд в образовании химических элементов заканчивается, им просто не хватает массы, чтобы зажечь углерод.
Но что не под силу малым звездам, оказывается по плечу светилам в пять и более раз массивнее Солнца. Они синтезируют из углерода кислород, кальций, кремний и другие элементы вплоть до железа и никеля. Однако на этом этапе у большинства массивных звезд начинаются проблемы. Дело в том, что вовлечение в термоядерный синтез железа происходит не с выделением, а с поглощением энергии.
Производимая ядром звезды энергия — это единственное, что удерживает звезду от коллапса. Образование же в ядре железа приводит к потере энергии, в результате чего массивная звезда теряет равновесие и в считанные доли секунды сжимается, а затем взрывается сверхновой, выбрасывая в пространство внешние слои с созданными химическими элементами. Но ведь железо в таблице Менделеева идет только под номером 26.
Откуда тогда взялись медь, серебро, золото, платина и другие элементы, если ничего тяжелее железа при термоядерной реакции образовываться не может?
Источник изображения: walkerart.org
На этот счет существуют разные мнения. Согласно одному такому мнению, в ходе взрыва сверхновой разлетающиеся с огромной скоростью атомные ядра сталкиваются с нейтронами и как-бы «обрастают» ими. Часть нейтронов превращаются в протоны, атомный номер ядра увеличивается, в результате чего получается новый более тяжелый элемент. Это так называемый R-процесс или быстрый захват нейтронов. Считается, что таким образом могут образовываться элементы вплоть до плутония.
Легальная алхимия звезд. Как получить ВСЁ из НИЧЕГО? — ТОПЛЕС
Согласно другой точке зрения, R-процесс запускается при слиянии нейтронных звезд с последующим выбросом в космос энергии и вещества. Чего-чего, а нейтронов в этих звездах хоть отбавляй, вот они и вступают в взаимодействие с атомными ядрами, обогащая их и синтезируя тем самым новые элементы. Но вероятнее всего, что образование тяжелых элементов имеет место в обоих случаях.
Итак, всё что вас окружает — это продукты жизнедеятельности звезд. Воздух, которым вы дышите, вода, которую пьете, золотое кольцо на пальце вашей руки и углерод в составе клеток вашего тела — всё это создано миллиарды лет назад в недрах светил. Согласитесь, как тут не почувствовать причастность к вечности?
Источник: dzen.ru
Откуда взялись элементы?
Все, что когда-либо существовало или когда-либо будет существовать, стало возможным благодаря некоторой перестановке или комбинации элементов, найденных в периодической таблице. Этот красочный набор элементов содержит целую вселенную информации.
Таблица Менделеева делает нашу жизнь намного проще, но в то же время и труднее! Это не только помогает нам помнить и понимать наши элементы, но также вызывает глубокие экзистенциальные вопросы, например, как эти элементы вообще возникли?
Появление материи
Эта попытка обнаружить происхождение химических элементов возвращает нас к началу времен.
Сразу после Большого взрыва Вселенная представляла собой плотный суп из материи и энергии. Температура была около 10 32 Кельвина. Вселенная начала надуваться и одновременно остывать (хотя температура все еще составляла триллионы Кельвина). Начали появляться элементарные частицы (кварки и электроны).
Когда Вселенной было немногим менее 0,0001 секунды, она начала испытывать новую форму возмущения. Космическая энергия, которая раньше была излучением высокой энергии, начала сталкиваться друг с другом.
Эти столкновения производят частицы (протоны) и античастицы (антипротоны) в процессе, называемом образованием пар.
Вселенная непрерывно выпускала все больше и больше таких пар. С другой стороны, эти протонные и антипротонные пары аннигилировали друг друга и снова превращались в фотоны и излучение.
Теперь, в возрасте 0,0001 секунды, Вселенная была немного холоднее, и фотоны перестали образовывать новые пары, но уже сформированные противоположные пары продолжали аннигилировать друг друга.
Можно было подумать, что в конечном итоге протонов не останется, но, как назло, процесс образования пар был немного более склонен к протонам (мы до сих пор не знаем почему). После того как все процессы прекратились, Вселенная осталась в основном фотонами, а также легкими брызгами протонов.
Быстро расширяющаяся Вселенная заставила несколько протонов столкнуться с электронами, породив нейтроны (на каждые 7 протонов приходится 1 нейтрон). На тот момент Вселенная была на несколько секунд старше и намного холоднее (всего один миллиард Кельвинов).
Протоны и нейтроны собрались вместе, чтобы сформировать ядро/ион первого элемента Водорода (H), который затем слился с другим ядром водорода, чтобы сформировать ядро Гелия (He). Прошло три минуты после Большого взрыва, и соотношение теперь составляет 75% ионов H и 25% ионов He (вместе с очень незначительным количеством Li-ионов). Элементы находятся в ионной форме, потому что Вселенная все еще очень горячая — слишком горячая, чтобы образовывать атомы.
Примерно 380 000 лет после Большого взрыва наступила эпоха рекомбинации. После многих лет расширения и охлаждения Вселенная была наконец готова к тому, что ядра захватили электроны. Ионы H и He рекомбинируют с электронами и образуют первые стабильные атомы (представьте, насколько легкими были бы занятия по химии на этом этапе!), Давая нам нашу первую форму света и эффективно инициируя химическую эволюцию.
Однако после эпохи рекомбинации Вселенная снова потемнела.
Нуклеосинтез и жизнь звезд
Со временем Вселенная остыла, плотные газовые облака собрались вместе под действием силы тяжести и создали первые области звездообразования. Когда облака слились воедино, они начали формировать горячие и тяжелые ядра, которые не хотели становиться больше. Горячее ядро начало гореть, чтобы предотвратить слипание еще большего количества облаков. Так началось соревнование между силой тяжести и давлением горения в конденсированном ядре. Точка, в которой эти две силы приходят в равновесие, — это когда рождается звезда!
За бесчисленные тысячелетия образовалось множество галактик, в каждой из которых мерцали миллионы больших и малых звезд. И что делает их яркими? Их горящие ядра.
Чтобы их ядра не коллапсировали под действием силы тяжести, звездам нужно было подключиться к постоянному источнику энергии. Эта энергия охотно обеспечивалась высвобождением энергии связи.
Представьте, что 4 атома водорода объединяются в ядре суммы; два протона из его ядра остаются, а два других превращаются в нейтроны (n) с помощью квантового туннелирования.
После слияния они образуют ядро гелия. Образовавшийся гелий весит немного меньше общей массы 2 n и 2 p. Недостающая масса — это то, что преобразуется в энергию связи и в конечном итоге питает звезду. Одна такая реакция высвобождает 26,71 мегаэлектронвольт энергии… теперь представьте себе миллионы таких взаимодействий, происходящих с невероятной скоростью!
На протяжении всей жизни звезда претерпевает различные стадии сжигания топлива, чтобы не разрушиться. Этот процесс порождает звездный феномен нуклеосинтеза, который начинается с горения или слияния водорода. Звезда тратит 90% своей жизни на превращение водорода в гелий. После того как водород истощен, он начинает превращать гелий в высшие элементы. С каждым новым этапом слияния элементов ядро становится все плотнее, а внешние слои звезд начинают расширяться, постепенно превращаясь в красного гиганта.
Звезды, примерно эквивалентные массе нашего Солнца (или более легкие), могут производить элементы выше гелия только после превращения в красный гигант (что означает, что он вот-вот умрет), поскольку их ядра недостаточно горячи. Однако ядра звезд большой массы делают идеальные котлы для синтеза ядер тяжелее гелия, чтобы генерировать энергию. С этого момента в статье мы будем рассматривать только массивные звезды.
Два атома гелия сливаются, образуя углерод, который затем соединяется с другим гелием, образуя кислород, в результате чего образуются все элементы периодической таблицы вплоть до кремния.
Последний этап стабильной звездной эволюции наступает, когда начинается горение кремния. Когда ядро начинает плавить кремний с железом, дни звезды действительно сочтены. Вскоре в ядре больше не будет ядерных реакций для «победы» над гравитацией. Железо имеет самое стабильное ядро во Вселенной, и его сплавление с чем-то более тяжелым не высвобождает энергию, но фактически требует внешней энергии. Это знаменует начало конца жизни огромной звезды.
Когда в ядре есть только железо (и следы никеля), оно становится настолько плотным, что начинает разрушаться само по себе. В последние несколько минут звезда выглядит слоистой как лук. В последние несколько секунд, когда ядро продолжает разрушаться, все атомы прижимаются друг к другу, что создает колоссальное количество энергии и давления. Это посылает ударную волну энергии по разным оболочкам.
В этот момент звезда становится сверхновой, распыляя каждый созданный ею элемент в бесконечное пространство!
Образование элементов тяжелее железа
Помните последние несколько секунд и только что упомянутую ударную волну? Когда звезда умирает и взрывается в сверхновую, она выделяет огромное количество энергии (температура поднимается до миллиардов Кельвинов) и очень плотное облако нейтронов.
Эти нейтроны взаимодействуют с атомами уже сформированных элементов. Они претерпевают серию сплавов и делений с образованием элементов вплоть до урана, а также нескольких трансурановых элементов, таких как кюрий, калифорний и фермий. Весь этот процесс быстрого захвата нейтронов или r-процесс происходит менее чем за секунду. Такие элементы, как золото, платина и серебро, настолько редки и дороги, потому что для их создания требуется умирающая звезда!
Другой распространенный путь — гораздо более медленный процесс захвата нейтронов, также известный как s-процесс. Это может происходить в различных термоядерных слоях звезды или внутри нейтронной звезды, которая имеет достаточно нейтронов и подходящие условия для захвата. Механизм для s- и r-процессов одинаков.
Ядро элемента захватывает нейтроны и превращается в свой изотоп. Если образовавшийся изотоп нестабилен, ядро подвергается бета-распаду с образованием следующего стабильного элемента. Таким образом, все известные нам элементы, включая железо и вплоть до урана, были произведены этим непрерывным процессом. Другая форма роста ядра — захват протона или p-процесс.
Это верно для всех элементов, за исключением технития и прометия, которые не имеют стабильных изотопов, которые могли бы длиться достаточно долго, чтобы мы могли найти. Все элементы после урана являются искусственными и радиоактивными с коротким периодом полураспада.
Это приводит к другому вопросу . Как элементы, созданные взрывающейся звездой, оказались здесь, на Земле?
Доставка на Землю
Вселенная — это гигантская фабрика для переработки; она перерабатывает и повторно использует каждый кусок материи, который когда-то был создан в процессе химического обогащения. Миллионы галактик, звезд и планет образовались и будут образованы с использованием той же самой первозданной материи, которая осталась после Большого взрыва.
Молодая Вселенная состояла из водорода и ¼ гелия, в то время как остальная часть вещества была незначительной. Однако, после миллиардов лет горения и взрывов, Вселенная теперь состоит из 2% других элементов! Это может показаться не впечатляющим, но в космическом масштабе этого достаточно!
Элементы, выброшенные в космос после смерти звезды, в конечном итоге попадают в новые регионы звездообразования, где молодые звезды начинают свой путь. Из-за гравитации часть мертвых звезд становится частью следующего поколения звезд.
После того, как эти звезды умирают, материя снова возвращается в космос. Этот цикл продолжается снова и снова эоны и тысячелетия. То же самое произошло, когда формировалась наша собственная солнечная система. Большая его часть в конечном итоге создала наш любимый большой огненный шар — Солнце. Однако оставшаяся звездная пыль, вращающаяся вокруг Солнца, в конечном итоге сгруппировалась, образуя астероиды и планеты, включая наш дом — Землю.
Вы не поверите, но все атомы в наших телах старше самой Солнечной системы! Они были созданы в результате серии событий, последовавших за одним событием, которое все началось 13,8 миллиарда лет назад. Золото в наших украшениях и цинк в наших батареях были созданы в последние моменты жизни звезды. Кислород и углерод в нашей газированной воде, железо в нашей крови и кальций в наших зубах были выкованы в тлеющем сердце звезды. Космос действительно находится внутри каждого из нас.
Источник: new-science.ru
Мировые богатства: откуда появилось большинство тяжелых элементов во Вселенной
Ученые, кажется, нашли ответ на вопрос, откуда взялись такие богатства, как серебро, золото или уран, а также такой яд, как ртуть. Это взрывы гиперновых.
Кирилл Панов
Anna Serena Esposito
Элементы тяжелее железа образуются при r-процессе, который наблюдается и при слиянии нейтронных звезд, но это капля в море
Ученые определили тип сверхновой, называемой магнитовращательной гиперновой, которая является потенциальным источником тяжелых элементов во Вселенной. Все началось с обнаружения старого красного гиганта, которому уже 13 миллиардов лет. Находится он во внешних областях Млечного Пути. Проанализировав его состав, астрономы нашли 44 тяжелых элемента. По словам астронома Дэвида Йонга из Австралийского национального университета в Канберре, это означает, что звезда образовалась из материала, оставшегося «в результате особого взрыва массивной звезды вскоре после Большого взрыва».
0 РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Как заверяют ученые, элементы в древней звезде не являются результатом слияния нейтронных звезд. Содержание определенных тяжелых элементов, таких как торий и уран, оказалось выше, чем можно было бы ожидать от слияния нейтронных звезд. Кроме того, звезда также содержит более легкие элементы — цинк и азот, которые не появляются в результате подобных слияний.
Поскольку в звезде оказалось очень мало железа, элемента, который накапливается в процессе звездообразования и гибели звезд, ученые считают, что данный красный гигант — звезда второго поколения, тяжелые элементы которой появились в результате одного единственного взрыва сверхновой. В ходе моделирования было сделано предположение, что это магнитовращательная гиперновая, образовавшаяся в результате смерти быстро вращающейся и сильно намагниченной звезды, по меньшей мере, в 25 раз массивнее нашего Солнца. Когда эти звезды в конце своей жизни взрываются, у них может быть энергичная, богатая нейтронами среда, необходимая для образования тяжелых элементов.
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Магнитовращающие гиперновые звезды могут быть похожи на коллапсары — тоже массивные вращающиеся звезды, которые вместо взрыва коллапсируют в черные дыры. Коллапсары ранее также подозревались в производстве элементов r-процесса. Исследователи считают, что магнитовращающие гиперновые звезды встречаются редко — 1 из 1000 сверхновых. Но даже в этом случае подобные взрывы происходили бы в 10 раз чаще, чем слияния нейтронных звезд. Эти гиперновые звезды могут быть родителями 90% всех элементов r-процесса.
Источник: www.techinsider.ru