Строение золота электронная конфигурация

В химии есть очень увлекательный, но сложный раздел – электронная конфигурация атомов и ионов.

Оглавление:

  • Строение «электронных» оболочек атомов
  • Распределение электронных зарядов по уровням
  • Электронные формулы химических элементов
  • Заключение

Молекулу любого из элементов таблицы Менделеева можно изучить с точки зрения как физики, так и химии.

Дивный молекулярный мир на атомном уровне отличается от привычного. Разберем подробно, как образуется электронная формула элементов.

Строение «электронных» оболочек атомов

Для лучшего понимания электронных окружающих ядро оболочек, нужно знать об ионе – частице, в основе которой, кроме электронов, присутствуют так называемые протоны.

Если число протонов больше числа электронов, то такой атом называется катионом (положительный заряд). В противном случае атом называется анионом (заряд отрицательный).

БЕЗ ЭТОГО НЕ СДАТЬ ЕГЭ по Химии — Электронная конфигурация атома

Каждый из электронов занимает свой собственный уровень относительно ядра.

Конфигурация электронов для отдельно взятого атома может строиться в порядке атомных чисел. В качестве первоначального элемента выбирается водород, а далее продолжается добавление одного протона к ядру согласно с подсхемой и местом в периодической таблице, пока не опишутся все химические элементы.

Такая процедура называется принципом Aufbau (Ауфбау). Название принципа происходит от немецкого слова и переводится «построить».

Можно сделать вывод, что появление ионов связано с моментом, когда атомы получают или теряют заряды. Катион (положительно заряженный ион) образуется, когда один или несколько зарядов удаляются из «родительского атома».

Распределение электронных зарядов по уровням

Как уже говорилось выше, молекула любого элемента периодической таблицы – это своеобразный микрокосмос, где в разные стороны (спины) двигаются заряженные частицы (лептон). По-английски spin означает «вращение». Их полуцелые «спины» были описаны Вольфгангом Паули в 1925 году.

Всего принципов построения графических распределительных схем существует три:

  1. Принцип ограничений, который сформирован швейцарским физиком В. Паули. На одном электронном уровне ядра может быть два лептона с разным направлением вращения (если один вращается против часов стрелки, то другой — по часовой). Опыты в адронном коллайдере доказали этот факт.
  2. Второй строительный принцип говорит, что лептоны стремятся занять уровни по мере возрастания энергетического запаса.
  3. Третий гласит, что любой электрон «любит» только себя и плохо переносит «соседей» по орбитали. Иными словами, сначала электроны занимают свободные клетки (в графическом исполнении формулы), а уже по второму кругу занимают свободные места.
Читайте также:
Как оплатить через телефон золото в танках

Теперь рассмотрим состав «квартир» для лептонов. В зависимости от уровня и энергии, орбитальные места можно разделить на четыре формы:

  1. Эс (s) имеет форму круга и способен на одном уровне вместить только два заряда ядра.
  2. Пи (p) готов предоставить три «места» для шести лептонов.
  3. Де (d) предоставляет пять «мест» – 10 заряженных частиц.
  4. Эф (f) самый щедрый на «места», их число равно семи – соответственно 14 парных частиц.

Электронные формулы химических элементов

Здесь приводится таблица-подсказка для некоторых химических элементов.

Теперь, руководствуясь данными таблицы, разберем электронные записи элементов на примере «аргона» (Ar).

В таблице Менделеева его номер — восемнадцать. Руководствуясь описанным выше, высчитываем количество частиц (всего их 18).

Ещё до построения электронно-графической формулы Аргона, вспомним, как формируются орбитали и строятся ячейки:

Начинаем распределять электроны Ar:

  1. a) поскольку аргон находится в третьем периоде, то у него три подуровня. Смотрим в учебник химии и находим, что это p-элемент;
  2. b) запишем формулу: 1 s, 2 s, 2 p, 3 s, 3 p;
  3. c) теперь рисуем орбитальные ячейки и заполняем их.

Графическое изображение формулы аргона

[advice]Важно знать: непарные заряды во внешних орбиталях, называемые валентными зарядами, отвечают за большинство химических и физических проявлений элементов.[/advice]

Заключение

Чтобы немного отстранится от научных теорий, стоит пофантазировать. Представьте атомное ядро и окружающие его заряды вселенной. Ядро – это солнце, а заряды — планеты. Формула наглядно описывает положение подобных «планет» в космосе (атомного вещества). Чтобы перейти с одного уровня на другой, потребуется большая энергия.

В квантовой физике некоторые специалисты выдвинули теорию о том, что при вмешательстве в структуру атома можно сделать объект невидимым. Ведь если подумать, то фотон (мельчайшая частица света) может не вступать в связь с электронами атома и, не встречая сопротивления, преодолевать объект.

Впечатляет? Химическая формула элемента очень важна для физики. Благодаря труду Менделееву и его таблице, нам стали доступны современные технологии. Химические формулы и эксперименты скучны и сложны, хочется верить, что эта статья сделала их более понятными.

Источник: www.prostudenta.ru

Электронная конфигурация атомов и ионов

В химии есть очень увлекательный, но сложный раздел – электронная конфигурация атомов и ионов.

Молекулу любого из элементов таблицы Менделеева можно изучить с точки зрения как физики, так и химии.

Читайте также:
Золото это тело или вещество ответы

Дивный молекулярный мир на атомном уровне отличается от привычного. Разберем подробно, как образуется электронная формула элементов.

Строение «электронных» оболочек атомов

Для лучшего понимания электронных окружающих ядро оболочек, нужно знать об ионе – частице, в основе которой, кроме электронов, присутствуют так называемые протоны.

Если число протонов больше числа электронов, то такой атом называется катионом (положительный заряд). В противном случае атом называется анионом (заряд отрицательный).

Каждый из электронов занимает свой собственный уровень относительно ядра.

Конфигурация электронов для отдельно взятого атома может строиться в порядке атомных чисел. В качестве первоначального элемента выбирается водород, а далее продолжается добавление одного протона к ядру согласно с подсхемой и местом в периодической таблице, пока не опишутся все химические элементы.

Такая процедура называется принципом Aufbau (Ауфбау). Название принципа происходит от немецкого слова и переводится «построить».

Можно сделать вывод, что появление ионов связано с моментом, когда атомы получают или теряют заряды. Катион (положительно заряженный ион) образуется, когда один или несколько зарядов удаляются из «родительского атома».

Распределение электронных зарядов по уровням

Как уже говорилось выше, молекула любого элемента периодической таблицы – это своеобразный микрокосмос, где в разные стороны (спины) двигаются заряженные частицы (лептон). По-английски spin означает «вращение». Их полуцелые «спины» были описаны Вольфгангом Паули в 1925 году.

Всего принципов построения графических распределительных схем существует три:

  1. Принцип ограничений, который сформирован швейцарским физиком В. Паули. На одном электронном уровне ядра может быть два лептона с разным направлением вращения (если один вращается против часов стрелки, то другой по часовой). Опыты в адронном коллайдере доказали этот факт.
  2. Второй строительный принцип говорит, что лептоны стремятся занять уровни по мере возрастания энергетического запаса.
  3. Третий гласит, что любой электрон «любит» только себя и плохо переносит «соседей» по орбитали. Иными словами, сначала электроны занимают свободные клетки (в графическом исполнении формулы), а уже по второму кругу занимают свободные места.

Теперь рассмотрим состав «квартир» для лептонов. В зависимости от уровня и энергии, орбитальные места можно разделить на четыре формы:

  1. Эс (s) имеет форму круга и способен на одном уровне вместить только два заряда ядра.
  2. Пи (p) готов предоставить три «места» для шести лептонов.
  3. Де (d) предоставляет пять «мест» – 10 заряженных частиц.
  4. Эф (f) самый щедрый на «места», их число равно семи – соответственно 14 парных частиц.

Электронные формулы химических элементов

Здесь приводится таблица-подсказка для некоторых химических элементов.

Читайте также:
Богатство это прежде всего золото

Теперь, руководствуясь данными таблицы, разберем электронные записи элементов на примере «аргона» (Ar).

В таблице Менделеева его номер восемнадцать. Руководствуясь описанным выше, высчитываем количество частиц (всего их 18).

Ещё до построения электронно-графической формулы Аргона, вспомним, как формируются орбитали и строятся ячейки:

Начинаем распределять электроны Ar:

  1. a) поскольку аргон находится в третьем периоде, то у него три подуровня. Смотрим в учебник химии и находим, что это p-элемент,
  2. b) запишем формулу: 1 s, 2 s, 2 p, 3 s, 3 p,
  3. c) теперь рисуем орбитальные ячейки и заполняем их.

Графическое изображение формулы аргона

Важно знать: непарные заряды во внешних орбиталях, называемые валентными зарядами, отвечают за большинство химических и физических проявлений элементов.

Заключение

Чтобы немного отстранится от научных теорий, стоит пофантазировать. Представьте атомное ядро и окружающие его заряды вселенной. Ядро – это солнце, а заряды планеты. Формула наглядно описывает положение подобных «планет» в космосе (атомного вещества). Чтобы перейти с одного уровня на другой, потребуется большая энергия.

В квантовой физике некоторые специалисты выдвинули теорию о том, что при вмешательстве в структуру атома можно сделать объект невидимым. Ведь если подумать, то фотон (мельчайшая частица света) может не вступать в связь с электронами атома и, не встречая сопротивления, преодолевать объект.

Впечатляет? Химическая формула элемента очень важна для физики. Благодаря труду Менделееву и его таблице, нам стали доступны современные технологии. Химические формулы и эксперименты скучны и сложны, хочется верить, что эта статья сделала их более понятными.

Источник: tarologiay.ru

Готовимся к углубленному изучению химии

Порядок заполнения электронами атомных орбиталей определяет принцип наименьшей энергии ( принцип минимума энергии):

Основное (устойчивое) состояние атома – это такое состояние, которое характеризуется минимальной энергией. Поэтому электроны заполняют орбитали в порядке увеличения их энергии.

Принцип наименьшей энергии определяет порядок заполнения энергетических подуровней: электроны заполняют энергетические подуровни в порядке увеличения их энергии.

Порядок заполнения уровней и подуровней электронами
I. Электронные формулы атомов химических элементов составляют в следующем порядке:
· Сначала по номеру элемента в таблице Д. И. Менделеева определяют общее число электронов в атоме;
· Затем по номеру периода, в котором расположен элемент, определяют число энергетических уровней;

· Уровни разбивают на подуровни и орбитали, и заполняют их электронами в соответствии Принципом наименьшей энергии

· Для удобства электроны можно распределить по энергетическим уровням, воспользовавшись формулой N=2n2 и с учётом того, что:

Читайте также:
Когда падает и растет золото

1. у элементов главных подгрупп (s-;p-элементы) число электронов на внешнем уровне равно номеру группы.

2. у элементов побочных подгрупп на внешнем уровне обычно два электрона (исключение составляют атомы Cu, Ag, Au, Cr, Nb, Mo, Ru, Rh, у которых на внешнем уровне один электрон, у Pd на внешнем уровне ноль электронов);

3. число электронов на предпоследнем уровне равно общему числу электронов в атоме минус число электронов на всех остальных уровнях.

II. Порядок заполнения электронами атомных орбиталей определяется :
1.Принципом наименьшей энергии
Шкала энергий:
1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s…

2. Состояние атома с полностью или наполовину заполненным подуровнем (т. е. когда на каждой орбитали имеется по одному неспаренному электрону) является более устойчивым.

Этим объясняется «провал» электрона. Так, устойчивому состоянию атома хрома соответствует следующее распределение электронов:

Cr: 1s22s22p63s23p64s13d5, а не 1s22s22p63s23p64s23d4,
т. е. происходит «провал» электрона с 4s-подуровня на 3d-подуровень.
III. Семейства химических элементов.

— Элементы, в атомах которых происходит заполнение электронами s-подуровня внешнего энергетического уровня, называются s-элементами. Это первые 2 элемента каждого периода, составляющие главные подгруппы I и II групп.

— Элементы, в атомах которых электронами заполняется p-подуровень внешнего энергетического уровня, называются p-элементами. Это последние 6 элементов каждого периода (за исключением I и VII), составляющие главные подгруппы III-VIII групп.

— Элементы, в которых заполняется d-подуровень второго снаружи уровня, называются d-элементами. Это элементы вставных декад IV, V, VI периодов.

— Элементы, в которых заполняется f-подуровень третьего снаружи уровня, называются f-элементами. К f-элементам относятся лантаноиды и актиноиды.

Правило Гунда :

На одном подуровне электроны располагаются так, чтобы абсолютное значение суммы спиновых квантовых чисел было максимальным. Это соответствует устойчивому состоянию атома.

Рассмотрим, например, какое расположение трех электронов на р-подуровне соответствует устойчивому состоянию атома:

Рассчитаем абсолютное значение суммарного спина для каждого состояния:

Максимальным абсолютным значением суммарного спина характеризуются состояния 2 и 5. Поэтому именно они соответствуют устойчивым состояниям атома.

Строение электронных оболочек (электронные конфигурации) атомов элементов I – IV периодов.
Чтобы правильно изображать электронные конфигурации различных атомов, нужно знать:
1) Число электронов в атоме (равно порядковому номеру элемента);
2) Максимальное число электронов на уровнях, подуровнях;
3) Порядок заполнения подуровней и орбиталей.

Элементы I периода:

Схема электронного строения атома водорода. (Схемы электронного строения атомов показывают распределение электронов по энергетическим уровням):

Электронная формула атома водорода. (Электронные формулы атомов показывают распределение электронов по энергетическим подуровням):

Электронно-графическая формула атома водорода. (Электронно-графические формулы атомов показывают распределение электронов по орбиталям и спины электронов):

Читайте также:
Как превратить людей в чистое золото

SHAPE * MERGEFORMAT

УПРАЖНЕНИЯ
1. Напишите электронную конфигурацию атома неона в первом возбужденном состоянии.

Решение : Электронная конфигурация атома неона в основном состоянии – 1 s 2 2 s 2 2 p 6 . Первое возбужденное состояние получается при переходе одного электрона с высшей занятой орбитам (2р) на низшую свободную орбиталь (3 s ). Электронная конфигурация атома неона в первом возбужденном состоянии – 1s 2 2s 2 2p 5 3s 1 .

_____________________________________________________________
2. Каков состав ядер изотопов 12 C и 13 C , 14 N и 15 N .

Решение : Число протонов в ядре равно порядковому номеру элемента и одинаково для всех изотопов данного элемента. Число нейтронов равно массовому числу (указываемому слева вверху от номера элемента) за вычетом числа протонов. Разные изотопы одного и того же элемента имеют разные числа нейтронов.

Состав указанных ядер:
12 С: 6р + 6 n ; 13 С: 6р + 7 n ; 14 N : 7 p + 7 n ; 15 N : 7 p + 8 n .
_____________________________________________________________
3. Напишите электронные конфигурации следующих элементов: N , Si , F е, К r , Те, W .
Решение: Энергия атомных орбиталей увеличивается в следующем порядке:
1 s 2 s 2 p 3 s 3 p 4 s 3 d 4 p 5 s 4 d 5 p 6 s 4 f 5 d 6 p 7 s 5 f 6 d .

На каждой s -оболочке (одна орбиталь) может находиться не более двух электронов, на p -оболочке (три орбитали) — не более шести, на d -оболочке (пять орбиталей) — не более 10 и на f -оболочке (семь орбиталей) — не более 14.

В основном состоянии атома электроны занимают орбитали с наименьшей энергией. Число электронов равно заряду ядра (атом в целом нейтрален) и порядковому номеру элемента. Например, в атоме азота — 7 электронов, два из которых находятся на 1 s -орбитали, два — на 2 s -орбитали, и оставшиеся три электрона — на 2 p -орбиталях. Электронная конфигурация атома азота:

+7 N : 1 s 2 2 s 2 2 p 3 . Электронные конфигурации остальных элементов:
+14 Si: 1s 2 2s 2 2p 6 3s 2 3p 2 ,
+26 F е : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 ,
+36 К r: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 ,
+52 Те : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 4 ,
+74 Те : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 4 .
_____________________________________________________________

4. Какой инертный газ и ионы каких элементов имеют одинаковую электронную конфигурацию с частицей, возникающей в результате удаления из атома кальция всех валентных электронов?

Решение : Электронная оболочка атома кальция имеет струк­туру 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 4 s 2 . При удалении двух валентных электронов образуется ион Са 2+ с конфигурацией 1 s 2 2 s 2 2р 6 З s 2 Зр 6 . Такую же электронную конфигурацию имеют атом Ar и ионы S 2- , С l — , К + , Sc 3+ и др.

Источник: himiy88.blogspot.com

Рейтинг
Загрузка ...