Здравствуйте, хабралюди. Предложу я вам задачку, которую мне вчера показала одна знакомая.
На каждого гнома из бесконечной очереди надет либо синий, либо красный колпак. Каждый гномик смотрит в спину впереди стоящего так, что первый видит колпаки всех, кроме своего, второй видит всех, кроме себя и первого, и так далее. Каждый гном знает лишь то, что видит, свое положение в очереди и то, о чем они все вместе договорились перед тем, как получить колпаки.
По команде все гномы должны одновременно назвать цвет. Тех, кто не угадал, какой на них колпак, расстр в общем, они не угадывают.
Вопрос: как им договориться, чтобы не угадало лишь конечное число гномов?
Тех, кому интересно и кто на данный момент не хочет предпринимать попытки решения, прошу пожаловать под кат. Статья будет представлять собой рассуждения о задаче и ее «решении». (Любителям математики я советую попробовать решить).
Часть 1/4. Размышления.
На первый взгляд кажется, что решения нет и не может быть. В самом деле, никакой информацией гномики обмениваться не могут никак. Более того, поскольку их бесконечно, все гномики абсолютно равноценны. Каждый из них видит абсолютно одинаковую по сути картину — бесконечную шеренгу из своих друзей. Никаких выводов, расчетов произвести ни у кого не получится, поскольку цвет колпака на данном конкретном гномике никак не зависит от того, что он видит.
Жадюги. Обзор настольной игры от Игроведа.
Первое о чем я подумал, это подсчет всяких свяких свойств последовательности, видимой гномиком. Представление синих колпаков числом 1, а красных числом -1, суммирование ряда в частных смыслах в попытках найти свойство, которое не сможет в последовательности частичных сумм изменяться слишком много раз. Но это оказалось абсолютно бесполезно.
Ничто не помогало, всё упиралось в факт, что все гномики равнозначно первые в своей очереди, и в какой-то момент я смело сказал: не может быть. Я был абсолютно уверен.
Часть 2/4. Авторское решение.
Нашел я его в сети. Автор говорит, что будет пользоваться аксиомой выбора.
Рассмотрим все возможные последовательности колпаков. Назовем две последовательности эквивалентными, если они различаются лишь в конечном числе позиций. Это отношение, очевидно, транзитивно, рефлексивно и симметрично, поэтому можно с его помощью разбить все возможные последовательности на классы.
По другому: две последовательности будут принадлежать одному классу, если они различаются лишь конечным числом колпаков. Теперь, из каждого класса выберем представителя (это можно сделать в силу аксиомы выбора) — какую-то конкретную последовательность. Этих представителей гномики должны знать.
Дело за малым: стоя в очереди, любой гномик может определить, в каком классе лежит текущая (та, которая имеет место быть) последовательность. В самом деле, каждый гномик НЕ видит лишь конечное число колпаков, а следовательно они никак не влияют на принадлежность последовательности какому-то классу. Другими словами, гномик может предположить, что все колпаки за ним (и его) — красные, и вспомнить класс, к которому относится такая последовательность. Она будет эквивалентна текущей. Теперь гномик вспомнит представителя этого класса и назовет цвет колпака, который был бы у него на голове, будь текущая последовательность совпадающей с представителем.
Что Стало с Гномами Торина После Хоббита?
Вуаля. Выбранный представитель (всеми гномиками одинаково) и текущая последовательность принадлежат одному классу, а следовательно различаются лишь в конечном числе позиций.
Да, такой разворот событий меня расстроил, и пришлось искать несовершенство в рассуждениях, чтобы защитить мое утверждение о том, что решения нет.
Часть 3/4. Что не так.
Конечно же, первое, что обращает на себя внимание — аксиома выбора. Автор ее подчеркнул, а все, кто про нее знают, знают так же и причину, по которой ее многие критикуют — неконструктивность.
Вкратце: аксиома выбора говорит о том, что на любом наборе непустых множеств можно определить функцию, которая по каждому множеству будет возвращать какой-то элемент, ему принадлежащий. Проблема в том, что такую функцию может быть невозможно построить/описать. Например, рассматривая все подмножества прямой (так называемый гиперконтинуум), предложить такую функцию нельзя. Хотя аксиома говорит о том, что она существует.
Может быть, дело в этом? Может быть, гномики не могут в принципе одинаково выбирать представителя каждого класса? Ведь классов много, столько же, сколько точек на прямой. То есть функция выбора как бы существует, а договориться о ней нельзя.
Но нет, это предположение оказалось бесполезным. Дело в том, что в решении аксиома выбора вообще не нужна. В каждом классе есть наименьшая в лексикографическом порядке последовательность, — например, её можно брать представителем.
Потом я стал думать о том, как гномики могут понять, к какому классу относится текущая последовательность. Не понадобится ли им для этого перебирать все классы и сравнивать, с чем может возникнуть проблема, ибо континуума времени не хватит на перебор континуума классов, в предположении, что мысль занимает ненулевое время…
Но не буду вас слишком запутывать, и так уже нагородил. Дело в том, что я вас только что обманул. Кто попался? Нельзя выбрать наименьший в лексикографическом порядке элемент класса.
Возьмем, например, класс, содержащий последовательность из всех синих колпаков 1, 1, 1, 1, 1, 1… В нем так же будут последовательности:
-1, 1, 1, 1, 1, 1,…
-1, -1, 1, 1, 1, 1,…
-1, -1, -1, 1, 1, 1,… какую из них ни взять, найдется лексикографически меньшая последовательность. Более того, то же можно сказать о любом классе — какая последовательность ни была бы наименьшей, можно найти в ней первую единицу и заменить на -1, получив еще меньшую. Получается, что такой минимум существует всего в одном из классов — содержащем -1, -1,… последовательность всех красных колпаков.
Вернемся.
Часть 4. Аксиома выбора.
Встает вопрос: можно ли всё-таки обойтись без нее в данном решении? Сейчас поанализируем.
Что из себя представляют наши классы? Давайте все последовательности представим числами из отрезка [0; 1]. Будем считать, что колпаки это цифры 0 и 1, а последовательность является числом 0,abcd… в двоичной системе счисления. Мы потеряем часть последовательностей, потому что, например, такие две:
0,011111… и 0,100000… задают одну и ту же дробь 1/2. Но это не слишком страшно, таких коллизий очень мало (всего лишь счётно). Зато каждому числу будет соответствовать какая-то последовательность, так что это почти взаимооднозначное соответствие между всеми последовательностями из 0/1 и всеми числами отрезка [0; 1].
Как выглядят наши классы на отрезке? Ужасно, каждый класс является счетным плотным множеством. Это значит, что для любого класса А и чисел х из [0; 1], эпсилон>0 в классе А будет число, расстояние от которого до х меньше эпсилон.
Доказать это просто
Достаточно взять любое число z из А, взять его хвост, начиная с цифры, соответствующей степени двойки n такой, что 2^n < эпсилон / 10. И этим хвостом заменить хвост числа х. Получившееся число и число z принадлежат одному классу и различаются не более, чем на эпсилон / 5.
Более того, если мы выберем представителей каждого класса, то они образуют типичное множество, не измеримое по Лебегу. Доказательство этого факта предлагаю прочесть в коротенькой статье на Википедии. Множество Витали строится очень похожим образом, а при доказательстве неизмеримости слова «на все рациональные числа» (про сдвиги) следует заменить «на все дроби с знаменателями вида 2^n» (в множестве Витали числа одного класса различаются на рациональное число, а у меня на конечную сумму отрицательных степеней двойки, то есть на дробь указанного вида).
В этом месте проблема с коллизиями в биекции, которую я чуть выше проигнорировал, заминается, поскольку счетное множество туда-сюда прибавить-отнять на измеримость по Лебегу не влияет.
Ну что ж, кто-то знает, а кто-то может прочитать в той же самой статье на Википедии, что построение ограниченных множеств без меры Лебега всегда опирается на аксиому выбора. Следовательно, решение автора существенно опирается на данную аксиому, и без нее не верно.
Получается, что наши бедные гномики знают, что функция выбора для представителей классов существует (если они согласны с теорей ZFC, конечно же), но выбирать этих представителей они все одинаково не смогут, поскольку описать эту функцию невозможно.
Послесловие.
Доказал ли я неверность авторского решения? Думаю, что да. Формулировка задачи — как гномикам договориться. Необходимость аксиомы выбора однозначно говорит, что ответа на «как» в решении нет и быть не может.
Есть ли решение у задачи? Доказать его отсутствие — слишком сложная задача, да и вряд ли можно придумать что-то лучше, чем равнозначность гномиков и отсутствие у них возможности обмениваться информацией. Для меня это достаточно убедительно. Если кто-то придумает что-то строгое — прошу поделиться.
Зачем это всё? Как я уже сказал, читателям этого хаба, на мой взгляд, может быть интересно. А мне, в свою очередь, крайне интересно обсудить задачу с сообществом. А еще, можно рассматривать статью как практический (насколько он может быть практическим) и доступный миниобзор последней буквы в аббревиатуре ZFC и связанных с нею проблем.
Приятного дня!
- теория множеств
- задачки
Источник: habr.com
Олимпиадные задачи
1. Не меняя порядка расположения цифр 1 2 3 4 5, поставьте между ними знаки арифметических действий и скобки так, чтобы в результате получилась единица. «Склеивать» соседние цифры в одно число нельзя.
Решение. Например, ((1 + 2) : 3 + 4) : 5 = 1. Возможны другие решения.
2. На скотном дворе гуляли гуси и поросята. Мальчик сосчитал количество голов, их оказалось 30, а затем он сосчитал количество ног, их оказалось 84. Сколько гусей и сколько поросят было на школьном дворе?
Ответ. 12 поросят и 18 гусей.
1 шаг. Представьте, что все поросята подняли по две ноги вверх.
2 шаг. На земле осталось стоять 30 ∙ 2 = 60 ног.
3 шаг. Подняли вверх 84 — 60 = 24 ноги.
4 шаг. Подняли 24 : 2 = 12 поросят.
5 шаг. 30 — 12 = 18 гусей.
3. Разрежьте фигуру на три одинаковые (совпадающие при наложении) фигурки:
4. Замените букву А на ненулевую цифру, чтобы получилось верное равенство. Достаточно привести один пример.
5. Девочки и мальчики по дороге в школу зашли в магазин. Каждый ученик купил по 5 тонких тетрадей. Кроме этого, каждая девочка купила 5 ручек и 2 карандаша, а каждый мальчик купил 3 карандаша и 4 ручки. Сколько было куплено тетрадей, если всего ручек и карандашей дети купили 196 штук?
Ответ. 140 тетрадей.
Решение. Каждый из учеников купил по 7 ручек и карандашей. Всего было куплено 196 ручек и карандашей.
196 : 7 = 28 учеников.
Каждый из учеников купил по 5 тетрадей, значит, всего куплено
28 ⋅ 5=140 тетрадей.
Предварительный просмотр:
Ключи школьной олимпиады по математике
1. На прямой 30 точек, расстояние между любыми двумя соседними равно 2 см. Какое расстояние между двумя крайними точками?
Решение. Между крайними точками помещается 29 частей по 2 см.
2 см * 29 = 58 см.
2. Будет ли сумма чисел 1 + 2 + 3 + . + 2005 + 2006 + 2007 делиться на 2007? Ответ обоснуйте.
Решение. Представим данную сумму в виде следующих слагаемых:
(1 + 2006) + (2 + 2005) + …..+ (1003 + 1004) + 2007.
Так как каждое слагаемое делится на 2007, то и вся сумма будет делиться на 2007.
3. Разрежьте фигурку на 6 равных клетчатых фигурок.
Решение. Фигурку можно разрезать только так
4. Настя расставляет в клетках квадрата 3 на 3 числа 1, 3, 5, 7, 9. Она хочет, чтобы сумма чисел по всем горизонталям, вертикалям и диагоналям делилась на 5. Приведите пример такой расстановки, при условии, что каждое число Настя собирается использовать не более двух раз.
Решение. Ниже приведена одна из расстановок. Существуют и другие решения.
5. Обычно за Павликом после уроков приезжает папа на машине. Однажды уроки закончились раньше обычного и Павлик пошел домой пешком. Спустя 20 минут он встретил папу, сел в машину и приехал домой на 10 минут раньше. На сколько минут раньше закончились уроки в этот день?
Ответ. На 25 минут раньше.
Решение. Машина приехала домой раньше, потому что ей не пришлось доезжать с места встречи до школы и обратно, значит, удвоенный этот путь машина проезжает за 10 минут, а в одну сторону – за 5 минут. Итак, машина встретилась с Павликом за 5 минут до обычного окончания уроков. К этому моменту Павлик уже шел 20 минут. Таким образом, уроки закончились на 25 минут раньше.
Предварительный просмотр:
Ключи школьной олимпиады по математике
1. Найдите решение числового ребуса a,bb + bb,ab = 60 , где a и b – различные цифры.
Ответ. 4,55 + 55,45 = 60
2. После того, как Наташа съела половину персиков из банки, уровень компота понизился на одну треть. На какую часть (от полученного уровня) понизится уровень компота, если съесть половину от оставшихся персиков?
Ответ. На одну четверть.
Решение. Из условия ясно, что половина персиков занимает треть банки. Значит, после того как Наташа съела половину персиков, в банке персиков и компота осталось поровну (по одной трети). Значит, половина от числа оставшихся персиков составляет четверть от всего объёма содержимого
банки. Если съесть эту половину оставшихся персиков, уровень компота понизится на четверть.
3. Разрежьте по линиям сетки прямоугольник, изображённый на рисунке, на пять прямоугольников различной площади.
Решение. Например, так
4. Замените буквы Y, E, A и R цифрами так, чтобы получилось верное равенство: YYYY ─ EEE ─ AA + R = 2017 .
Ответ. При Y=2, E=1, A=9, R=5 получаем 2222 ─ 111 ─ 99 + 5 = 2017.
5. На острове жив ё т неч ё тное число людей, прич ё м каждый из них либо рыцарь, который всегда говорит правду, либо лжец, который всегда лж ё т. Как-то раз все рыцари заявили: ― «Я дружу только с 1 лжецом», а все лжецы: ― «Я не дружу с рыцарями». Кого на острове больше, рыцарей или лжецов?
Ответ. Рыцарей больше
Решение. Каждый лжец дружит хотя бы с одним рыцарем. Но так как каждый рыцарь дружит ровно с одним лжецом, у двух лжецов не может быть общего друга-рыцаря. Тогда каждому лжецу можно поставить в соответствие его друга рыцаря, откуда получается, что рыцарей, по крайней мере, столько же, сколько и лжецов. Так как всего жителей на острове неч ё тное число, то равенство невозможно.
Значит, рыцарей больше.
Предварительный просмотр:
Ключи школьной олимпиады по математике
1. В семье 4 человека. Если Маше удвоят стипендию, общий доход всей семьи возрастет на 5%, если вместо этого маме удвоят зарплату – на 15%, если же зарплату удвоят папе – на 25%. На сколько процентов возрастет доход всей семьи, если дедушке удвоят пенсию?
Решение . При удвоении стипендии Маши общий доход семьи увеличивается ровно на величину этой стипендии, поэтому она составляет 5% от дохода. Аналогично, зарплаты мамы и папы составляют 15% и 25%. Значит, пенсия дедушки составляет 100 – 5 – 15 — 25 = 55%, и если е ё удвоят, то доход семьи вырастет на 55%.
2. На сторонах АВ , CD и AD квадрата АВСD вовне построены равносторонние треугольники АВМ , CLD и ADK соответственно. Найдите ∠ МKL .
Решение. Рассмотрим треугольник MAK : угол MAK равен 360° — 90° — 60° — 60° = 150°. MA = AK по условию, значит, треугольник MAK равнобедренный, ∠ AMK = ∠ AKM = (180° — 150°) : 2 = 15°.
Аналогично получаем, что угол DKL равен 15°. Тогда искомый угол MKL равен сумме ∠ MKA + ∠ AKD + ∠ DKL = 15° + 60° + 15° = 90°.
3. Ниф-Ниф, Наф-Наф и Нуф-Нуф делили три кусочка трюфеля массами 4 г., 7 г. и 10 г. Волк решил им помочь. Он может от любых двух кусочков одновременно отрезать и съесть по 1 г. трюфеля. Сможет ли волк оставить поросятам равные кусочки трюфеля? Если да, то как?
Решение. Волк может сначала три раза отрезать по 1 г от кусочков в 4 г и 10 г. Получатся один кусок в 1 г и два куска по 7 г. Теперь осталось шесть раз отрезать и съесть по 1 г от кусочков в 7 г., тогда поросятам достанется по 1 г. трюфеля.
4. Сколько всего есть четырехзначных чисел, которые делятся на 19 и оканчиваются на 19?
Легко убедиться, что все числа 1919, 3819, 5719, 7619 и 9519 нам подходят.
5. Команда из Пети, Васи и одноместного самоката участвует в гонке. Дистанция разделена на участки одинаковой длины, их количество равно 42, в начале каждого – контрольный пункт. Петя пробегает участок за 9 мин, Вася – за 11 мин, а на самокате любой из них проезжает участок за 3 мин. Стартуют они одновременно, а на финише учитывается время того, кто пришел последним.
Ребята договорились, что один проезжает первую часть пути на самокате, остаток бегом, а другой — наоборот (самокат можно оставить на любом контрольном пункте). Сколько участков Петя должен проехать на самокате, чтобы команда показала наилучшее время?
Предварительный просмотр:
Ключи школьной олимпиады по математике
1. Саше и Юре сейчас вместе 35 лет. Саше сейчас вдвое больше лет, чем было Юре тогда, когда Саше было столько лет, сколько Юре сейчас. Сколько лет сейчас Саше и сколько – Юре?
Ответ. Саше 20 лет, Юре 15 лет .
3. Рыбак выловил большое число рыб весом 3,5 кг. и 4,5 кг. Его рюкзак вмещает не более 20 кг. Какой максимальный вес рыбы он может взять с собой? Ответ обоснуйте.
4. Стрелок десять раз выстрелил по стандартной мишени и выбил 90 очков.
Сколько попаданий было в семерку, восьмерку и девятку, если десяток было четыре, а других попаданий и промахов не было?
Ответ. В семерку – 1 попадание, в восьмерку – 2 попадания, в девятку – 3 попадания.
5 . Середины соседних сторон в выпуклом четырехугольнике соединены отрезками. Докажите, что площадь получившегося четырехугольника в два раза меньше площади первоначального.
Источник: nsportal.ru
Четверо гномов — Альберт, Брок, Вренн и Глоин — спорили, у кого больше золота. Каждый из них сказал по одной фразе:
Альберт: «У меня не больше всех и не меньше всех золота.»
Брок: «У меня не меньше всех золота.»
Вренн: «У меня больше всех золота.»
Глоин: «У меня меньше всех золота.»
Известно, что у любых двух гномов разное количество золота, и ровно один из четырёх гномов соврал. У кого из гномов больше всех золота? У кого из гномов меньше всех золота?
Больше всего золота у
Меньше всего золота у
nagaeva1953: Ответы?
Ответы
Автор ответа: salikoveldar904
Ответ:
у Брока больше всех а у глоина меньше всех
Источник: sous-otvet.net