В момент взрыва начинались уже не тормоядерные, а чисто ядерные реакции с испусканием огромного количество нейтронов, гамма-квантов, альфа- и бета-частиц и т.д. И когда эти нейтроны, альфа-бета-гамма частицы проникали в разлетающиеся от взрыва внешние слои звёздной оболочки, они реагировали с накопленными там элементами середины периодической таблицы и создавали более тяжёлые элементы.
И так вплоть до самых тяжёлых трансурановых элементов. Поэтому образовавшиеся от взрыва туманности оказывались обогащёнными тяжёлыми элементами. А затем после истощения энергии взрыва начинал работать механизм гравитационного накопления: под действием собственной гравитации созданная туманность понемногу сжималась, образуя новую звезду уже так называемого второго поколения. И эта звезда оказывалась обогащённой тяжёлыми элементами. И не только сама звезда, но и планеты вокруг неё, которые тоже возникали из этой же туманности.
автор вопроса выбрал этот ответ лучшим
Источник: www.bolshoyvopros.ru
Происхождение химических элементов во Вселенной | Лекции по астрономии – Сергей Попов | Научпоп
Ученые раскрыли, как возникают самые тяжелые элементы во Вселенной
Группа международных исследователей вернулась к формированию Солнечной системы 4,6 миллиарда лет назад, чтобы по-новому взглянуть на космическое происхождение самых тяжелых элементов. И обнаружила, как именно же они образовались и во время какого процесса.
Читайте «Хайтек» в
Тяжелые элементы, с которыми мы сталкиваемся в нашей повседневной жизни, такие как железо и серебро, не существовали в начале Вселенной 13,7 миллиарда лет назад. Они были созданы во времени в результате ядерных реакций, называемых нуклеосинтезом, которые объединили атомы вместе. В частности, йод, золото, платина, уран, плутоний и кюрий — некоторые из самых тяжелых элементов — были созданы с помощью особого типа нуклеосинтеза, называемого процессом быстрого захвата нейтронов или r-процессом.
Вопрос о том, какие астрономические события могут производить самые тяжелые элементы, оставался загадкой на протяжении десятилетий. Сегодня считается, что r-процесс может происходить во время сильных столкновений между двумя нейтронными звездами, между нейтронной звездой и черной дырой или во время редких взрывов после смерти массивных звезд. Такие высокоэнергетические события происходят во Вселенной очень редко. Когда это происходит, нейтроны включаются в ядра атомов, а затем превращаются в протоны. Поскольку элементы в периодической таблице определяются количеством протонов в их ядрах, процесс r создает более тяжелые ядра по мере захвата большего количества нейтронов.
Некоторые из ядер, образованных в результате r-процесса, радиоактивны, и для их распада на стабильные ядра требуются миллионы лет. Йод-129 и кюрий-247 — два таких ядра, которые были образованы до образования Солнца. Они были включены в твердые тела, которые в конечном итоге упали на земную поверхность в виде метеоритов. Внутри этих метеоритов в результате радиоактивного распада образовался избыток стабильных ядер. Сегодня это превышение можно измерить в лабораториях, чтобы определить количество йода-129 и кюрия-247, которые присутствовали в Солнечной системе непосредственно перед ее образованием.
Пульсары. Квазары. Нейтронные звезды.
Почему эти два ядра r-процесса такие особенные? У них есть обычное свойство: они распадаются почти с одинаковой скоростью. Другими словами, соотношение между йодом-129 и кюрием-247 не изменилось с момента их создания миллиарды лет назад.
«Это удивительное совпадение, особенно с учетом того, что эти ядра являются двумя из пяти радиоактивных ядер r-процесса, которые можно измерить в метеоритах. Когда соотношение йода-129 и кюрия-247 застыло во времени, как доисторическое ископаемое, мы можем напрямую взглянуть на последнюю волну производства тяжелых элементов, которая сформировала состав Солнечной системы и всего в ней».
Бенуа Котэ, обсерватория Конколы
Йод с его 53 протонами создается легче, чем кюрий с его 96 протонами. Это связано с тем, что для достижения большего числа протонов кюрия требуется больше реакций захвата нейтронов. Как следствие, соотношение йода-129 и кюрия-247 сильно зависит от количества нейтронов, которые были доступны во время их создания.
Команда рассчитала соотношение йода-129 к кюрию-247, синтезируемые столкновениями нейтронных звезд и черных дыр, чтобы найти правильный набор условий, воспроизводящих состав метеоритов. Они пришли к выводу, что количество нейтронов, доступных во время последнего события r-процесса перед рождением Солнечной системы, не могло быть слишком большим. В противном случае было бы образовано слишком много кюрия по сравнению с йодом. Это означает, что очень богатые нейтронами источники, такие как материя, оторвавшаяся от поверхности нейтронной звезды во время столкновения, вероятно, не играли важной роли.
Так что же создало эти ядра r-процесса ? Хотя исследователи могли предоставить новую информативную информацию о том, как они были созданы, они не смогли определить природу астрономического объекта, который их создал. Это связано с тем, что модели нуклеосинтеза основаны на неопределенных ядерных свойствах, и до сих пор неясно, как связать доступность нейтронов с конкретными астрономическими объектами — такими, как массивные взрывы звезд и сталкивающиеся нейтронные звезды.
С помощью этого нового диагностического инструмента достижения в области астрофизического моделирования и понимания ядерных свойств могут выявить, какие астрономические объекты создают самые тяжелые элементы Солнечной системы.
Читать также:
Источник: hightech.fm
Откуда берутся тяжелые элементы?
Полученные данные проливают свет на то, как создаются самые тяжелые элементы во Вселенной.
Результаты также подтвердили, что » нейтронные звезды действительно состоят из нейтронов «, — рассказал новостному порталу space.com ведущий автор исследования Дарак Уотсон, астрофизик из Института Нильса Бора в Копенгагенском университете. » Звучит это глупо, но мы действительно не знали этого наверняка. Теперь, все что было найдено указывает на элементы, которые могли образоваться только в присутствии большого количества нейтронов «.
Иллюстрация. Столкновение нейтронных звезд.
Три самых легких элемента во Вселенной — водород, гелий и литий. Они образовались в самые ранние моменты появления того космоса, который мы знаем. Большинство элементов, более тяжелых чем литий, вплоть до железа в периодической таблице, появились через миллиарды лет после «начала».
Но как были образованы элементы тяжелее железа, такие как золото или уран, долгое время было неизвестно. Предыдущие исследования предложили ключевую подсказку: чтобы атомы выросли до больших размеров, им нужно было быстро поглощать нейтроны. Так быстрый захват нейтронов, известный как » r-процесс «, происходит в природе только в экстремальных условиях, когда атомы бомбардируются большим количеством нейтронов.
Предыдущие исследования предполагали, что вероятным источником r-процесса являются последствия слияния нейтронных звезд.
Нейтронная звезда. Иллюстрация
В 2017 году астрономы впервые стали свидетелями слияния пары нейтронных звезд. Ученые сделали открытие, обнаружив гравитационные волны, которые образовались вследствие этого события. Это случилось на расстоянии 130 миллионов световых лет от Земли. Слияние получило название GW170817 .
Уотсон и его коллеги подозревали, что если более тяжелые элементы и образовались во время слияния, то сигнатуры их должны быть обнаружены в последствиях, известных как килонова . Они сфокусировались на длинах волн света или спектральных линиях, которые с помощью спектроскопии связали с конкретными элементами.
До сих пор не удавалось успешно рассмотреть тяжелые элементы в таких столкновениях, потому как во взрыве невозможно отличить один элемент от другого.
Однако, проведя повторный анализ данных слияния 2017 года, Уотсон с коллегами смогли определить сигнатуру стронция — тяжелого элемента . На Земле стронций естественным образом содержится в почве и концентрируется в определенных минералах
Ключ к этой удивительной (для ученых) находке может быть связан с призрачными частицами, известными как нейтрино , которые обычно проходят через обычную материю, но иногда могут сталкиваться с протонами или нейтронами.
Чтобы создать относительно «легкий» тяжелый элемент , такой как стронций, Вам нужно сначала уничтожить несколько нейтронов, а для этого нужно бомбардировать их нейтрино, чтобы они быстрее распались на протоны и электроны.
Несмотря на значительные успехи, обнаружить другие тяжелые элементы будет достаточно затруднительно, т.к. об атомарной структуре очень мало качественных данных из-за их сложной природы.
Источник: dzen.ru