Золото это активный металл

Все металлы, в зависимости от их окислительно-восстановительной активности объединяют в ряд, который называется электрохимическим рядом напряжения металлов (так как металлы в нем расположены в порядке увеличения стандартных электрохимических потенциалов) или рядом активности металлов:

Li, K, Ва, Ca, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb, H2, Cu, Hg, Ag, Рt, Au

Наиболее химически активные металлы стоят в ряду активности до водорода, причем, чем левее расположен металл, тем он активнее. Металлы, занимающие в ряду активности, место после водорода считаются неактивными.

Алюминий

Алюминий представляет собой серебристо-белого цвета. Основные физические свойства алюминия – легкость, высокая тепло- и электропроводность. В свободном состоянии при пребывании на воздухе алюминий покрывается прочной пленкой оксида Al2O3, которая делает его устойчивым к действию концентрированных кислот.

Алюминий относится к металлам p-семейства. Электронная конфигурация внешнего энергетического уровня – 3s 2 3p 1 . В своих соединениях алюминий проявляет степень окисления равную «+3».

Как Получить Самый АКТИВНЫЙ МЕТАЛЛ НА ЗЕМЛЕ?

Алюминий получают электролизом расплава оксида этого элемента:

Однако из-за небольшого выхода продукта, чаще используют способ получения алюминия электролизом смеси Na3[AlF6] и Al2O3. Реакция протекает при нагревании до 960 С и в присутствии катализаторов – фторидов (AlF3, CaF2 и др.), при этом на выделение алюминия происходит на катоде, а на аноде выделяется кислород.

Алюминий способен взаимодействовать с водой после удаления с его поверхности оксидной пленки (1), взаимодействовать с простыми веществами (кислородом, галогенами, азотом, серой, углеродом) (2-6), кислотами (7) и основаниями (8):

Кальций

В свободном виде Ca – серебристо-белый металл. При нахождении на воздухе мгновенно покрывается желтоватой пленкой, которая представляет собой продукты его взаимодействия с составными частями воздуха. Кальций – достаточно твердый металл, имеет кубическую гранецентрированную кристаллическую решетку.

Электронная конфигурация внешнего энергетического уровня – 4s 2 . В своих соединениях кальций проявляет степень окисления равную «+2».

Кальций получают электролизом расплавов солей, чаще всего – хлоридов:

Кальций способен растворяются в воде с образованием гидроксидов, проявляющих сильные основные свойства (1), реагировать с кислородом (2), образуя оксиды, взаимодействовать с неметаллами (3 -8), растворяться в кислотах (9):

Железо и его соединения

Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – [Ar]3d 6 4s 2 . В своих соединениях железо проявляет степени окисления «+2» и «+3».

Металлическое железо реагирует с водяным паром, образуя смешанный оксид (II, III) Fe3O4:

На воздухе железо легко окисляется, особенно в присутствии влаги (ржавеет):

Как и другие металлы железо вступает в реакции с простыми веществами, например, галогенами (1), растворяется в кислотах (2):

Цезий — самый активный металл на Земле!

2Fe + Br2 = 2FeBr3 (при нагревании) (1)

Железо образует целый спектр соединений, поскольку проявляет несколько степеней окисления: гидроксид железа (II), гидроксид железа (III), соли, оксиды и т.д. Так, гидроксид железа (II) можно получить при действии растворов щелочей на соли железа (II) без доступа воздуха:

Гидроксид железа (II) растворим в кислотах и окисляется до гидроксида железа (III) в присутствии кислорода.

Соли железа (II) проявляют свойства восстановителей и превращаются в соединения железа (III).

Оксид железа (III) нельзя получить по реакции горения железа в кислороде, для его получения необходимо сжигать сульфиды железа или прокаливать другие соли железа:

Соединения железа (III) проявляют слабые окислительные свойства и способны вступать в ОВР с сильными восстановителями:

Производство чугуна и стали

Выделяют различные типы сталей, так, по назначению выделяют конструкционные, нержавеющие, инструментальные, жаропрочные и криогенные стали. По химическому составу выделяют углеродистые (низко-, средне- и высокоуглеродистые) и легированные (низко-, средне- и высоколегированные). В зависимости от структуры выделяют аустенитные, ферритные, мартенситные, перлитные и бейнитные стали.

Стали нашли применение во многих отраслях народного хозяйства, таких как строительная, химическая, нефтехимическая, охрана окружающей среды, транспортная энергетическая и другие отрасли промышленности.

Читайте также:
916 проба золота или серебра

В зависимости от формы содержания углерода в чугуне — цементит или графит, а также их количества различают несколько типов чугуна: белый (светлый цвет излома из-за присутствия углерода в форме цементита), серый (серый цвет излома из-за присутствия углерода в форме графита), ковкий и жаропрочный. Чугуны очень хрупкие сплавы.

Области применения чугунов обширны – из чугуна изготавливают художественные украшения (ограды, ворота), корпусные детали, сантехническое оборудование, предметы быта (сковороды), его используют в автомобильной промышленности.

Примеры решения задач

Задание Сплав магния и алюминия массой 26,31 г растворили в соляной кислоте. При этом выделилось 31,024 л бесцветного газа. Определите массовые доли металлов в сплаве.
Решение Вступать в реакцию с соляной кислотой способны оба металла, в результате чего выделяется водород:

Найдем суммарное число моль выделившегося водорода:

v(H2) = 31,024/22,4 = 1,385 моль

Пусть количество вещества Mg – х моль, а Al –y моль. Тогда, исходя из уравнений реакций можно записать выражение для суммарного числа моль водорода:

Выразим массу металлов, находящихся в смеси:

Тогда, масса смеси будет выражаться уравнением:

Получили систему уравнений:

33,24 -36у+27у = 26,31

Тогда, масса металлов в смеси:

m(Mg) = 24×0,23 = 5,52 г

m(Al) = 27×0,77 = 20.79 г

Найдем массовые доли металлов в смеси:

ώ(Mg) = 5,52/26,31 ×100%= 20,98%

ώ(Al) = 100 – 20,98 = 79,02%

Задание Запишите уравнения реакций с помощью которых можно осуществить следующие превращения Ca→ Ca(OH)2→Ca(HCO3)2→CaCO3→CaO→Ca
Решение Ca + H2O = Ca(OH)2 + H2↑

Источник: ru.solverbook.com

К активным металлам относятся. Самый активный металл

Наиболее химически активные металлы стоят в ряду активности до водорода, причем, чем левее расположен металл, тем он активнее. Металлы, занимающие в ряду активности, место после водорода считаются неактивными.

Алюминий представляет собой серебристо-белого цвета. Основные физические свойства алюминия – легкость, высокая тепло- и электропроводность. В свободном состоянии при пребывании на воздухе алюминий покрывается прочной пленкой оксида Al2O3, которая делает его устойчивым к действию концентрированных кислот.

Положение в таблице Менделеева

Металлические свойства элементов ослабевают слева направо в периодической таблице Менделеева. Поэтому наиболее активными считаются элементы I и II групп.

Активные металлы в таблице Менделеева

Рис. 1. Активные металлы в таблице Менделеева.

Все металлы являются восстановителями и легко расстаются с электронами на внешнем энергетическом уровне. У активных металлов всего один-два валентных электрона. При этом металлические свойства усиливаются сверху вниз с возрастанием количества энергетических уровней, т.к. чем дальше электрон находится от ядра атома, тем легче ему отделиться.

Наиболее активными считаются щелочные металлы:

К щелочноземельным металлам относятся:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Узнать степень активности металла можно по электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен. Металлы, стоящие справа от водорода, малоактивны и могут взаимодействовать только с концентрированными кислотами.

Электрохимический ряд напряжений металлов

Рис. 2. Электрохимический ряд напряжений металлов.

К списку активных металлов в химии также относят алюминий, расположенный в III группе и стоящий левее водорода. Однако алюминий находится на границе активных и среднеактивных металлов и не реагирует с некоторыми веществами при обычных условиях.

Это интересно: Что называют ветром и от чего зависит его сила? Какова главная причина образования ветра?

Активные металлы – список в химии, таблица ряда Активные металлы 3

Что мы узнали?

К активным металлам относятся элементы I и II групп – щелочные и щелочноземельные металлы, а также алюминий. Их активность обусловлена строением атома – немногочисленные электроны легко отделяются от внешнего энергетического уровня. Это мягкие лёгкие металлы, быстро вступающие в реакцию с простыми и сложными веществами, образуя оксиды, гидроксиды, соли. Алюминий находится ближе к водороду и для его реакции с веществами требуются дополнительные условия – высокие температуры, разрушение оксидной плёнки.

ХимияЗакон постоянства состава вещества – практическое значение, формула (химия 8 класс)

Положение активных металлов в таблице Менделеева

К активным металлам относятся три группы элементов:

  • щелочные металлы;
  • щелочноземельные металлы;
  • алюминий.

Щелочные металлы находятся в первой группе таблицы Менделеева, то есть занимают в ней крайнее левое положение. В частности щелочными металлами являются:

  • литий (Li);
  • натрий (Na);
  • калий (K);
  • рубидий (Rb);
  • цезий (Cs);
  • франций (Fr).

Щелочноземельные металлы находятся во второй группе, то есть правее щелочных металлов. К ним относятся:

  • бериллий (Be);
  • магний (Mg);
  • кальций (Ca);
  • стронций (Sr);
  • барий (Ba);
  • радий (Ra).

Активные металлы 2

Активные металлы в таблице Менделеева
В целом активные металлы отличаются тем, что имеют один или два валентных электрона, поэтому они легко отдают эти электроны в ходе химических реакций, выступая в качестве восстановителей. Степень активности металла можно оценить по его расположению в электрохимическом ряде активности металлов. Чем левее там находится металл, тем сильнее выражены его восстановительные свойства. Крайнее левое положение в ряде занимает литий. В вот крайне правое положение в ряду занимает золото, именно поэтому оно почти не окисляется кислотами.

Читайте также:
Как в танках серебро обменять на золото

Активные металлы 3

Электрохимический ряд напряжений металлов

Алюминий – это так называемый постпереходный металл, по своим свойствам он находится где-то между активными и среднеактивными металлами. Разные ученые придерживаются различного мнения о том, стоит ли считать алюминий активным металлом.

Активные металлы не встречаются в природе в чистом виде, так как они быстро вступают в химические реакции с другими элементами. Чаще всего в природе они присутствуют в виде оксидов. Например, даже если алюминий получен в чистом виде, то на воздухе он быстро покрывается оксидной пленкой.

Литий

Самый электрохимически активный металл литий

При внесении уточнений и рассмотрения наиболее электрохимически активного элемента становится очевидно, что лидирующее положение в плане активности займет литий. Название данного элемента переводится как «камень» – связано это с тем, что он был обнаружен в петалите (минерал). Металл, обладающий серебристым цветом, тонет в воде, но уверенно держится на поверхности керосина. По электрохимической активности данный элемент превосходит все остальные щелочные элементы, вытесняя другие металлы при химических реакциях. Это главное свойство лития является определяющим для остальных его характеристик.

Литий в небольших количествах необходим для нормального функционирования организма человека

Свойства

Активные металлы отличаются мягкостью (можно разрезать ножом), лёгкостью, невысокой температурой плавления.

Основные химические свойства металлов представлены в таблице.

– 2K + 2HMnO4 → 2KMnO4 + H2

– 2Na + 2H2O → 2NaOH + H2; – 2NaOH + CuCl2 → Cu(OH)2↓ + 2NaCl

Активные металлы легко вступают в реакции, поэтому в природе находятся только в составе смесей – минералов, горных пород.

Минералы и чистые металлы

Рис. 3. Минералы и чистые металлы.

История открытия

Его открытие принадлежит немецким исследователям Р. Бунзену и Г. Кирхгофу. Уже тогда ученые интересовались, какие металлы активные, а какие — нет. В 1860 году исследователи изучали состав воды из Дюркгеймского водохранилища. Делали они это при помощи спектрального анализа. В образце воды ученые обнаружили такие элементы, как стронций, магний, литий, кальций.

Затем они решили проанализировать каплю воды при помощи спектроскопа. Тогда они и увидели две ярко-голубые линии, находящиеся недалеко друг от друга. Одна из них по своему положению практически совпадала с линией металла стронция. Ученые решили, что выявленное ими вещество является неизвестным и отнесли его к группе щелочных металлов.

В том же году Бунзен написал письмо своему коллеге-фотохимику Г. Роско, в котором рассказывал об этом открытии. А официально о цезии было сообщено 10 мая 1860 года на заседании ученых Берлинской академии. Через шесть месяцев Бунзен смог выделить около 50 граммов хлороплатинита цезия. Ученые переработали 300 тонн минеральной воды и выделили порядка 1 кг хлорида лития в качестве побочного продукта, чтобы в конечном счете получить самый активный металл. Это говорит о том, что цезия в минеральных водах содержится очень мало.

Сложность получения цезия постоянно толкает ученых на поиск содержащих его минералов, одним из которых является поллуцит. Но извлечение цезия из руд всегда оказывается неполным, в процессе эксплуатации цезий очень быстро рассеивается. Это делает его одним из самых труднодоступных веществ в металлургии. В земной коре, к примеру, содержится 3,7 граммов цезия на одну тонну.

А в одном литре морской воды лишь 0,5 мкг вещества представляют собой самый активный металл. Это приводит к тому, что извлечение цезия является одним из самых трудоемких процессов.

Использование цезия

Этот металл используется для изготовления различных фотоэлементов. А также соединения цезия применяются в специальных отраслях оптики — в изготовлении инфракрасных приборов, Цезий используют в изготовлении прицелов, которые позволяют заметить технику и живую силу врага. Также его применяют для изготовления особых металлогалогенных ламп.

Но этим не исчерпывается круг его применения. На основе цезия был создан также ряд медицинских препаратов. Это лекарства для лечения дифтерии, язвенных болезней, шоков и шизофрении. Как и соли лития, соли цезия обладают нормотимическими свойствами — или, попросту, способны стабилизировать эмоциональный фон.

Железо и его соединения

Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – 3d 6 4s 2 . В своих соединениях железо проявляет степени окисления «+2» и «+3».

Читайте также:
Пятна на слитках золота

Металлическое железо реагирует с водяным паром, образуя смешанный оксид (II, III) Fe 3 O 4:

3Fe + 4H 2 O (v) ↔ Fe 3 O 4 + 4H 2

На воздухе железо легко окисляется, особенно в присутствии влаги (ржавеет):

3Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3

Как и другие металлы железо вступает в реакции с простыми веществами, например, галогенами (1), растворяется в кислотах (2):

Fe + 2HCl = FeCl 2 + H 2 (2)

Железо образует целый спектр соединений, поскольку проявляет несколько степеней окисления: гидроксид железа (II), гидроксид железа (III), соли, оксиды и т.д. Так, гидроксид железа (II) можно получить при действии растворов щелочей на соли железа (II) без доступа воздуха:

FeSO 4 + 2NaOH = Fe(OH) 2 ↓ + Na 2 SO 4

Гидроксид железа (II) растворим в кислотах и окисляется до гидроксида железа (III) в присутствии кислорода.

Соли железа (II) проявляют свойства восстановителей и превращаются в соединения железа (III).

Оксид железа (III) нельзя получить по реакции горения железа в кислороде, для его получения необходимо сжигать сульфиды железа или прокаливать другие соли железа:

4FeS 2 + 11O 2 = 2Fe 2 O 3 +8SO 2

2FeSO 4 = Fe 2 O 3 + SO 2 + 3H 2 O

Соединения железа (III) проявляют слабые окислительные свойства и способны вступать в ОВР с сильными восстановителями:

2FeCl 3 + H 2 S = Fe(OH) 3 ↓ + 3NaCl

Производство чугуна и стали

Выделяют различные типы сталей, так, по назначению выделяют конструкционные, нержавеющие, инструментальные, жаропрочные и криогенные стали. По химическому составу выделяют углеродистые (низко-, средне- и высокоуглеродистые) и легированные (низко-, средне- и высоколегированные). В зависимости от структуры выделяют аустенитные, ферритные, мартенситные, перлитные и бейнитные стали.

Стали нашли применение во многих отраслях народного хозяйства, таких как строительная, химическая, нефтехимическая, охрана окружающей среды, транспортная энергетическая и другие отрасли промышленности.

В зависимости от формы содержания углерода в чугуне — цементит или графит, а также их количества различают несколько типов чугуна: белый (светлый цвет излома из-за присутствия углерода в форме цементита), серый (серый цвет излома из-за присутствия углерода в форме графита), ковкий и жаропрочный. Чугуны очень хрупкие сплавы.

Области применения чугунов обширны – из чугуна изготавливают художественные украшения (ограды, ворота), корпусные детали, сантехническое оборудование, предметы быта (сковороды), его используют в автомобильной промышленности.

Где используется

Использование металла отражает тенденции развития технологий.

Традиционные отрасли

До недавнего времени главными сферами применения металла были ядерная отрасль и металлургия:

  • Литий идет на стержни для реакторов. Жидкий изотоп служит теплоносителем в ядерных реакторах. Из него получают тритий.
  • Металлургией используются сплавы, улучшающие характеристики продукта: прочность, устойчивость к коррозии, пластичность.
  • Это также стекла, задерживающие часть ультрафиолета, керамика, пигмент для окрашивания тканей, ингредиент косметических препаратов.

Нитрат лития создает огни салюта красного цвета.

Литий в сплавах с другими металлами – новое поколение материалов для авиации, космонавтики, оборонпрома.

Новые сферы

Сегодня главные потребители сырья – IT-сфера и автопром нового поколения. Речь о литиевых аккумуляторах для гаджетов (айфоны, ноутбуки, планшеты) и электрокаров. В первую очередь автомобилей корпорации Илона Маска Tesla.

Литий-ионный аккумулятор

Литий-ионный аккумулятор

Для создания батареи на одну Tesla требуется 63 кг чистого (99,5%) лития.

К 2023 году поставить производство электромобилей на поток намерены автогиганты США, Японии, Европы (Audi, Ford, Honda, Mercedes, BMW, другие). Годовая потребность в металле составит 96-98 тысяч тонн.

Источник: kuban-stan.ru

Ряд напряжений металлов их свойства. Мир современных материалов — электрохимический ряд напряжений металлов

С точностью ответить на вопрос, какой самый активный металл, почти невозможно. Все связано с тем, что ученые имеют разные точки зрения в отношении данного вопроса. Некоторые признают наиболее активным цезий. Другие утверждают, что таковым можно считать литий, а третьи утверждают, что наиболее активным считается франций. Почему же столько разных мнений и с чем это связано?

Но при рассмотрении данного вопроса, учитывая все нюансы, можно найти более-менее ясный ответ, какой же металл может считаться наиболее активным.

Положение в таблице Менделеева

Металлические свойства элементов ослабевают слева направо в периодической таблице Менделеева. Поэтому наиболее активными считаются элементы I и II групп.

Активные металлы в таблице Менделеева

Рис. 1. Активные металлы в таблице Менделеева.

Все металлы являются восстановителями и легко расстаются с электронами на внешнем энергетическом уровне. У активных металлов всего один-два валентных электрона. При этом металлические свойства усиливаются сверху вниз с возрастанием количества энергетических уровней, т.к. чем дальше электрон находится от ядра атома, тем легче ему отделиться.

Читайте также:
На вес золота осталось

Наиболее активными считаются щелочные металлы:

К щелочноземельным металлам относятся:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Узнать степень активности металла можно по электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен. Металлы, стоящие справа от водорода, малоактивны и могут взаимодействовать только с концентрированными кислотами.

Электрохимический ряд напряжений металлов

Рис. 2. Электрохимический ряд напряжений металлов.

К списку активных металлов в химии также относят алюминий, расположенный в III группе и стоящий левее водорода. Однако алюминий находится на границе активных и среднеактивных металлов и не реагирует с некоторыми веществами при обычных условиях.

Франций Химическая реакция Активные металлы – список в химии, таблица ряда Раковые клетки под микроскопом

Литий

Самый электрохимически активный металл литий

При внесении уточнений и рассмотрения наиболее электрохимически активного элемента становится очевидно, что лидирующее положение в плане активности займет литий. Название данного элемента переводится как «камень» – связано это с тем, что он был обнаружен в петалите (минерал). Металл, обладающий серебристым цветом, тонет в воде, но уверенно держится на поверхности керосина. По электрохимической активности данный элемент превосходит все остальные щелочные элементы, вытесняя другие металлы при химических реакциях. Это главное свойство лития является определяющим для остальных его характеристик.

Литий в небольших количествах необходим для нормального функционирования организма человека

Свойства

Активные металлы отличаются мягкостью (можно разрезать ножом), лёгкостью, невысокой температурой плавления.

Основные химические свойства металлов представлены в таблице.

Реакция Уравнение Исключение
Щелочные металлы самовозгораются на воздухе, взаимодействуя с кислородом K + O2 → KO2 Литий реагирует с кислородом только при высокой температуре
Щелочноземельные металлы и алюминий на воздухе образуют оксидные плёнки, а при нагревании самовозгораются 2Ca + O2 → 2CaO
Реагируют с простыми веществами, образуя соли – Ca + Br2 → CaBr2; – 2Al + 3S → Al2S3 Алюминий не вступает в реакцию с водородом
Бурно реагируют с водой, образуя щёлочи и водород – 2Na + 2H2O → 2NaOH + H2; – Ca + 2H2O → Ca(OH)2 + H2 Реакция с литием протекает медленно. Алюминий реагирует с водой только после удаления оксидной плёнки
Реагируют с кислотами, образуя соли – Ca + 2HCl → CaCl2 + H2;

– 2K + 2HMnO4 → 2KMnO4 + H2

– 2Na + 2H2O → 2NaOH + H2; – 2NaOH + CuCl2 → Cu(OH)2↓ + 2NaCl

Активные металлы легко вступают в реакции, поэтому в природе находятся только в составе смесей – минералов, горных пород.

Минералы и чистые металлы

Рис. 3. Минералы и чистые металлы.

История

Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам . Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.

Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений .

В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.

Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым . Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов — тем, что называется химическим сродством

» . Открытие Бекетовым вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять другие из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые (поэтому данный ряд часто также называют
вытеснительный ряд Бекетова
, или просто
ряд Бекетова
).

Не отрицая значительных заслуг Бекетова в становлении современных представлений о ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда. Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl 2 и свинец — из кислого раствора PbCl 2 ; она же способна к растворению в концентрированной соляной кислоте с выделением водорода . Медь, олово и свинец находятся в ряду правее кадмия , однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl 2 .

Читайте также:
Краска preference темное розовое золото отзывы

Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» — расположению металлов по значению стандартных электродных потенциалов . Таким образом, вместо качественной характеристики — «склонности» металла и его иона к тем или иным реакциям — Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов

Что мы узнали?

К активным металлам относятся элементы I и II групп – щелочные и щелочноземельные металлы, а также алюминий. Их активность обусловлена строением атома – немногочисленные электроны легко отделяются от внешнего энергетического уровня. Это мягкие лёгкие металлы, быстро вступающие в реакцию с простыми и сложными веществами, образуя оксиды, гидроксиды, соли. Алюминий находится ближе к водороду и для его реакции с веществами требуются дополнительные условия – высокие температуры, разрушение оксидной плёнки.

Теоретические основы

Значения электрохимических потенциалов являются функцией многих переменных и поэтому обнаруживают сложную зависимость от положения металлов в периодической системе . Так, окислительный потенциал катионов растёт с увеличением энергии атомизации металла, с увеличением суммарного потенциала ионизации его атомов и с уменьшением энергии гидратации его катионов.

В самом общем виде ясно, что металлы, находящиеся в начале периодов характеризуются низкими значениями электрохимических потенциалов и занимают места в левой части ряда напряжений. При этом чередование щелочных и щёлочноземельных металлов отражает явление диагонального сходства . Металлы, расположенные ближе к серединам периодов, характеризуются большими значениями потенциалов и занимают места в правой половине ряда. Последовательное увеличение электрохимического потенциала (от −3,395 В у пары Eu 2+ /Eu [ ] до +1,691 В у пары Au + /Au) отражает уменьшение восстановительной активности металлов (свойство отдавать электроны) и усиление окислительной способности их катионов (свойство присоединять электроны). Таким образом, самым сильным восстановителем является металлический европий , а самым сильным окислителем — катионы золота Au + .

В ряд напряжений традиционно включается водород, поскольку практическое измерение электрохимических потенциалов металлов производится с использованием стандартного водородного электрода .

Практическое использование ряда напряжений

Ряд напряжений используется на практике для сравнительной [относительной] оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе :

  • Металлы, стоящие левее водорода, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu 2+ → Zn 2+ + Cu возможно только в прямом направлении.
  • Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) — и при взаимодействии с водой.
  • Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
  • При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.

Сферы применения

Используется при изготовлении:

  1. Термоэлектропреобразователей.
  2. Высокоэффективных лазеров.
  3. Пиротехники. С его помощью окрашивают пламя фейерверков в красный цвет.
  4. Припоев.
  5. Металлогалогеновых ламп, щелочных аккумуляторов.
  6. Смазочных материалов.
  7. Стекла, покрытий для фарфоровых изделий.

Основные сферы применения:

  • ядерная энергетика;
  • металлургия;
  • медицина.

Перхлорат щелочного металла используется в качестве окислителя.

Аккумулятор (Фото: Instagram / aspil_energy)

Промышленное получение

Для получения лития промышленными способами сначала происходит подготовка расходного сырья — минералов или солевых растворов, которые добываются из соляных озер. Независимо от способа добычи расходного сырья, на выходе получается Li2CO3, который будет проходить промышленную обработку.

Способы получения расходного сырья:

  • электролиз;
  • восстановление;
  • рафинирование.

Выбор промышленного способа получения щелочного металла зависит от наличия оборудования, требуемого результата, вида расходного сырья.

Фото 866

Рафинирование (Фото: Instagram / krasnoyarsk.science)

Источник: ledmoda.ru

Рейтинг
Загрузка ...