Х Химический состав клетки составляют около 80 элементов таблицы Менделеева. Химический состав клетки определяет ее способность к жизнедеятельности и развитию организма в целом.
- Содержание химических элементов в клетке;
- Вода и минеральные соли;
- Липиды и углеводы;
- Белки;
- Нуклеиновые кислоты.
Содержание химических элементов в клетке
В клетках обнаружено более 80 химических элементов. Все элементы делят на три группы.
Микроэлементы, ссдержание которых колеблется от 10 -3 % до 10 -6 %. Это железо, марганец, медь, цинк, кобальт, никель, иод, фтор; на их долю приходится менее 1,0 % массы клеток.
Ультрамикроэлементы, составляющие менее 10 -6 % – это золото, серебро, уран, цезий, бром, ванадий, селен и др., на их долю приходится менее 0,01% массы клетки. Физиологическая роль установлена только для некоторых из них. Например, дефицит селена приводит к развитию раковых заболеваний.
Все перечисленные элементы входят в состав неорганических и органических веществ или содержатся в виде ионов.
Про атомы и молекулы для детей. Познавательный мультик
Вода и минеральные соли
Неорганические соединения клеток представлены водой и минеральными солями.
Содержание воды в разных клетках зависит от интенсивности обменных процессов и колеблется от 10% в эмали зуба до 85% в нервных клетках и до 97% в клетках развивающегося зародыша. В среднем в теле многоклеточных содержится около 80% воды от массы тела.
Вода в клетках выполняет следующие функции:
- связанная вода (4 — 5% от всего ее содержания) образует водные (сольватные) оболочки вокруг молекул белков, препятствуя склеиванию их друг с другом;
- свободная вода является универсальным растворителем и способствует транспорту растворенных в ней веществ;
- вода принимает непосредственное участие в реакциях гидролиза;
- вода регулирует тепловой режим и осмотическое давление в клетках.
По отношению к воде все вещества делятся на гидрофильные (водорастворимые) – многие минеральные соли, кислоты, щелочи, моносахариды, белки, витамины (С и В) и гидрофобные (водонерастворимые) – жиры, полисахариды, некоторые соли, витамины (А, D).
Минеральные соли и химические элементы в определенных концентрациях необходимы для нормальной жизнедеятельности клеток. Так, азот и сера входят в состав молекул белков, фосфор – в ДНК, РНК и АТФ, магний – во многие ферменты и хлорофилл, железо – в гемоглобин, цинк в гормон поджелудочной железы, иод – в гормоны щитовидной железы и т.д. Нерастворимые соли кальция и фосфора обеспечивают прочность костной ткани, катионы натрия, калия и кальция – раздражимость клеток. Ионы кальция принимают участие в свертывании крови.
Липиды и углеводы
Органические соединения составляют около 20 — 30% массы живых клеток. К ним относятся биологические полимеры – белки, нуклеиновые кислоты и полисахариды, а также липиды, гормоны, пигменты, АТФ и др.
Липиды (жиры) и липоиды являются обязательными компонентами всех клеток. Содержание жиров в клетке колеблется от 5 до 15% массы сухого вещества, а в клетках подкожной жировой клетчатки – до 90%. Липиды представляют собой сложные эфиры высокомолекулярных жирных кислот и трехатомного спирта глицерина, а липоиды – жирных кислот с другими спиртами. Эти соединения нерастворимы в воде (гидрофобны). Липиды могут образовывать сложные комплексы с белками (липопротеины), углеводами (гликолипиды), остатками фосфорной кислоты (фосфолипиды) и др.
5. Строение вещества. Атомы и молекулы (часть 1)
- строительная – жиры составляют основу биологических мембран;
- энергетическая – жиры являются источником энергии;
- запасающая – жиры откладываются в жировой ткани животных и в плодах и семенах растений и являются запасным источником энергии;
- источник воды – при окислении жиров выделяется вода;
- защитная – скопления жира выполняют теплоизоляционную и механическую защиту органов.
Все углеводы подразделяют на моно-, ди- и полисахариды. Моносахариды чаще содержат пять (пентозы) или шесть (гексозы) атомов углерода. Пентозы (рибоза и дезоксирибоза) входят в состав нуклеиновых кислот и АТФ. Гексозы (глюкоза и фруктоза) постоянно присутствуют в клетках плодов растений, придавая им сладкий вкус.
Глюкоза содержится в крови и служит источником энергии для клеток и тканей животных. Дисахариды объединяют в одной молекуле два моносахарида. Пищевой сахар (сахароза) состоит из молекул глюкозы и фруктозы, молочный сахар (лактоза) включает глюкозу и галактозу. Все моно- и дисахариды хорошо растворимы в воде и имеют сладкий вкус.
Молекулы полисахаридов образуются в результате поликонденсации моносахаридов. Мономером полисахаридов – крахмала, гликогена, целлюлозы (клетчатки) является глюкоза. Полисахариды практически нерастворимы в воде и не обладают сладким вкусом. Основные полисахариды – крахмал (в растительных клетках) и гликоген (в клетках животных) откладываются в виде включений и служат запасными энергетическими веществами. Целлюлоза образует стенку растительных клеток и выполняет защитную функцию.
Углеводы образуются в растениях в процессе фотосинтеза и могут использоваться в дальнейшем для биосинтеза аминокислот, жирных кислот и других соединений.
Углеводы выполняют четыре основные функции:
- строительную – образуют стенки растительных клеток;
- энергетическую – углеводы являются основным источником энергии;
- запасающую – углеводы откладываются в клетках в виде гликогена или крахмала и являются запасным источником энергии;
- защитную – целлюлоза в стенках клеток растений.
Белки
Белки составляют 10 — 18% от общей массы клетки. Молекулярная масса их колеблется от десятков тысяч до многих миллионов единиц. Белки – это биополимеры, мономерами которых являются 20 аминокислот. Молекулы белков различаются по величине, структуре и функциям, которые определяются составом, количеством и порядком расположения аминокислот. Помимо простых белков (альбумины, глобулины, гистоны) имеются и сложные – соединения белков с углеводами (гликопротеины), жирами (липопротеины) и нуклеиновыми кислотами (нуклеопротеины).
Каждая аминокислота состоит из углеводородного радикала, соединенного с карбоксильной группой, имеющей кислотные свойства (–СООН)‚ и аминогруппой (–NН2)‚ обладающей основными свойствами. Аминокислоты отличаются одна от другой только радикалами. Они способны соединяться в длинные цепочки. При этом устанавливаются прочные ковалентные (пептидные) связи между углеродом кислотной и азотом основной групп (–СО–NН–) с выделением молекулы воды. Соединения, состоящие из двух аминокислотных остатков, называются дипептидами, из трех – трипептидами, из многих – полипептидами.
Различные свойства и функции белковых молекул определяются последовательностью соединения аминокислот, которая закодирована в ДНК. Эту последовательность называют первичной структурой молекулы белка, от которой в свою очередь зависят последующие уровни ее пространственной организации и биологические свойства белков.
Вторичная структура белковой молекулы достигается ее спирализацией благодаря установлению между атомами соседних витков спирали водородных связей. Функционирование в виде закрученной спирали характерно для некоторых фибриллярных белков (фибриноген, миозин, экшн и др.).
Многие белковые молекулы становятся функционально активными только после приобретения глобулярной (третичной) структуры. Она формируется путем многократного сворачивания спирали в трехмерное образование – глобулу. Эта структура поддерживается ковалентными дисульфидными (–S–S–) связями, гидрофобными взаимодействиями и электростатическими связями. Глобулярную структуру имеет большинство белков (альбумины, глобулины и др.).
Для выполнения некоторых функций требуется участие белков с более высоким уровнем организации, при котором возникает объединение нескольких глобулярных белковых молекул в единую систему – четвертичную структуру (химические связи могут быть разные – гидрофобные взаимодействия, водородные и ионные связи). Например, молекула гемоглобина состоит из четырех различных глобул и небелковой части – гема, содержащего железо.
Утрата белковой молекулой своей структурной организации называется денатурацией. Причиной ее могут быть различные химические (кислоты, щелочи, спирт, соли тяжелых металлов и др.) и физические (высокая температура и давление, ионизирующие излучения и др.) факторы. Вначале разрушается четвертичная, затем третичная, вторичная, а при более жестких условиях и первичная структура (происходит деградация). Если под действием денатурирующего фактора не затрагивается первичная структура, то при возвращении белковых молекул в нормальные условия среды их структура полностью восстанавливаетея, т.е. происхоцит ренатурация.
Свойства белков: гидрофильность, видовая специфичность, химическая активность, способность денатурировать и ренатурировать, переходить из золя в гель, изменять конфигурацию молекул под действием факторов среды.
Белки выполняют следующие функции:
- строительную – входят в состав большинства клеточных структур;
- каталитическую – все ферменты являются белками;
- транспортную – переносят различные вещества, напригер гемоглобин, – O2;
- двигательную – обусловливают сокращение мышц, жгутиков, ресничек;
- защитную – выполняют антитела;
- сигнальную (рецепторную) – белковые молекулы способны изменять свою структуру под действием различных факторов среды;
- регуляторную – гормоны, имеющие белковую природу (инсулин);
- энергетическую – белки являются источником энергии.
Каталитическую функцию в клетках выполняют белки-ферменты, в десятки и сотни тысяч раз ускоряющие течение биохимических реакций при нормальном давлении и температуре 37 °С. Действие ферментов строго специфично: каждый фермент катализирует только одну реакцию, действует на одно вещество или один тип связи при определенной температуре и рН среды. Высокая специфичность ферментов обусловлена наличием одного или нескольких активных центров, в которых происходит тесный контакт между молекулами фермента и субстратом (веществом, на которое действует данный фермент).
Нуклеиновые кислоты
Нуклеиновые кислоты представляют собой сложные высокомолекулярные биополимеры, мономерами которых являются нуклеотиды.
Существует два типа нуклеиновых кислот: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). ДНК входит в основном в хроматин ядра, хотя небольшое ее количество содержится и в некоторых органоидах (митохондрии, пластиды). РНК содержится в ядрышках, кариолимфе, рибосомах, митохондриях, пластидах и в гиалоплазме клетки.
Структура молекулы ДНК была впервые расшифрована Дж. Уотсоном и Ф. Криком в 1953 г. Она представляет собой две полинуклеотидные цепи, соединенные друг с другом. Мономерами цепей являются нуклеотиды. В состав каждого нуклеотида входят: пятиуглеродный сахар – дезоксирибоза, остаток фосфорной кислоты и одно из четырех азотистых оснований: аденин и гуанин (пуриновые основания), цитозин и тимин (пиримидиновые основания). Нуклеотиды отличаются один от другого только азотистыми основаниями.
Нуклеотиды соединяются в цепочку путем образования фосфодиэфирных (ковалентных) связей между дезоксирибозой одного и остатком фосфорной кислоты другого, соседнего, нуклеотида. Молекулы ДНК могут содержать от 200 до 2 * 10 8 нуклеотидов. Огромное разнообразие молекул ДНК достигается разным составом, количеством и различной последовательностью нуклеотидов.
Обе цепочки объединяются в одну молекулу ведородными связями, возникающими между азотистыми основаниями нуклеотидов противоположных цепочек, причем в виду определенной пространственной конфигурации между аденином и тимином устанавливаются две связи, а между гуанином и цитозином – три. Вследствие этого нуклеотиды двух цепочек образуют пары: А — Т, Г — Ц . Строгое соответствие нуклеотидов друг другу в парных цепочках ДНК называется комплементарностью (дополнительностью). Это свойство лежит в основе репликации (самоудвоения) молекулы ДНК.
Репликация молекулы ДНК происходит следующим образом. Под действием фермента (ДНК-полимераза) разрываются водородные связи между нуклеотидами двух цепочек и к освободившимся связям по принципу комплементарности присоединяются соответствующие нуклеотиды ДНК.
Следовательно, порядок нуклеотидов в «старой» цепочке ДНК определяет порядок нуклеотидов в «новой», т.е. «старая» цепочка ДНК является матрицей для синтеза «новой». Такие реакции называются реакциями матричного синтеза; они характерны только для живого.
Роль ДНК в клетке заключается в хранении, воспроизведении и передаче генетической информации. Благоларя матричному синтезу наследственная информация дочерних клеток точно соответствует материнской.
РНК, как и ДНК, представляет собой полимер, состоящий из мономеров – нуклеотидов. Структура нуклеотидов РНК сходна с таковой ДНК, но имеет следующие отличия: вместо дезоксирибозы в состав нуклеотидов РНК входит пятиуглеродный сахар – рибоза, а вместо азотистого основания тимина – урацил. По сравнению с ДНК в состав РНК входит меньше нуклеотидов, и, следовательно, ее молекулярная масса меньше. В клетках эукариот встречаются только одноцепочечные молекулы РНК.
Имеется три типа РНК: информационная, транспортная и рибосомальная.
Информационная РНК (и-РНК) состоит из 300 — 30000 нуклеотидов и составляет примерно 5% от всей РНК, содержащейся в клетке. Она представляет собой комплементарную копию определенного участка ДНК (гена). Молекулы и-РНК выполняют роль переносчиков генетической информации от ДНК к месту синтеза белка ( в рибосомы) и непосредственно участвуют в сборке его молекул.
Транспортная РНК (т-РНК) составляет до 10% от всей РНК клетки и состоит из 75 — 85 нуклеотидов. Молекулы т-РНК транспортируют аминокислоты из цитоплазмы в рибосомы.
Основную часть РНК цитоплазмы (около 85%) составляет рибосомальная РНК (р-РНК). Она входит в состав рибосом. Молекулы р-РНК состоят из 3 — 5 тыс. нуклеотидов. р-РНК обеспечивает определенное пространственное взаиморасположение и-РНК и т-РНК.
Источники информации
1. Биология для абитуриентов. Авторы: Давыдов В.В. , Бутвиловский В.Э. , Рачковская И. В. , Заяц Р.Г.
Источник: biobloger.ru
Химия — наука о веществах
Когда мы слышим слово «химия», сразу представляем человека, окружённого колбами, пробирками, наполненными веществами всевозможных цветов. Он записывает непонятные символы, которые нам кажутся иероглифами. Перед нами встает вопрос: что это за наука, какие задачи изучает? Ответ достаточно прост: предмет химии – вещества.
План урока:
Знакомство с химией
Когда мы слышим слово «химия», сразу представляем человека, окружённого колбами, пробирками, наполненными веществами всевозможных цветов. Он записывает непонятные символы, которые нам кажутся иероглифами. Перед нами встает вопрос: что это за наука, какие задачи изучает? Ответ достаточно прост, предмет химии – вещества.
Химия — наука о веществах, их свойствах и превращениях в другие вещества.
Как и каждая наука, химия имеет свою историю развития. Первые химические знания появились до нашей эры, в Древнем Египте. Египтяне обладали химической наукой, которую называли «Священным искусством». Некоторые рецепты приготовления парфюмерии и лекарственных препаратов используют и до сих пор. Наверняка вы слышали об алхимиках и философском камне, с помощью которого, можно превратить любой металл в золото.
В современном представлении термин «химия» можно услышать в нескольких интерпретациях: химия как наука, а также продукты химического производства (одним словом химия). Мы не представляем наше существование без химических веществ. Просыпаясь утром, идём умываться: мыло, зубная паста ждут нас в ванной комнате. Ароматный чай и хрустящие хлопья на завтрак. Одежда, обувь, школьные принадлежности и многое другое мы получаем благодаря химическим технологиям.
Но также можно сказать, что химия – это вред. Неоднократно слышали о кислотных дождях, о гибели морских жителей из-за нефтяных пятен, о нитратах в овощах и фруктах и т. д.
Химия тесно связана с человечеством, является неотъемлемой его частью. Чтобы не наносить вред нашей планете, необходимо применять химические знания и рационально использовать вещества.
Именно благодаря своей многогранности химия применяется в каждой области:
- Медицина: лекарственные препараты, вакцины, искусственные органы, косметические средства;
- Искусство: живопись, архитектура, фотографии, изготовление ювелирных изделий, ковка, литье;
- Сельское хозяйство: удобрение, средства для борьбы с вредителями;
- Криминалистика: опознание личности по ДНК, отпечаткам пальцев, определение состава ядовитых и взрывчатых веществ;
- Строительство: производство строительных материалов, обработка древесины;
- Металлургия: без металлов не существует ни одна отрасль. Металлы и сплавы окружают нас повсюду;
- В быту: средство бытовой химии, при приготовлении обеда также применяем химические знания;
- Пищевая промышленность: молочная, мясная продукция, соусы, кондитерские изделия и т. д.;
- Охрана окружающей среды. На данный момент остро стоит проблема охраны окружающей среды. Деятельность человека губительно действует на планету. Но с помощью химических знаний, которые базируются на свойствах веществ, учёные находят способы очистки воды, почвы, воздуха от вредных веществ.
(Источник)
Химия – наука очень обширная и включает в себя много разделов, которые имеют своё назначение и изучают вещества, их строение и свойства.
- Неорганическая химия или её ещё называют химия неживой природы. Предмет изучения химические элементы и их соединения;
- Биохимия изучает процессы, которые происходят в организмах при обмене веществ, дыхании и т. д.;
- Органическая химия или химия углерода. Это увлекательный раздел знакомит о множестве соединений, благодаря уникальным свойствам углерода;
- Физическая химия рассматривает закономерности реакций;
- Аналитическая химия, благодаря качественному и количественному анализу позволяет исследовать смеси.
Чтобы овладеть химическими знаниями, необходимо изучить физику, биологию, а также математику. Как видно из схемы, химия тесно перекликается с другими науками.
Атомно-молекулярное учение. Мельчайшие частицы
Как и каждая наука, химия имеет свои термины и понятия, которые изучаются на протяжении всего курса. Эти термины для вас будут не новыми, вы с ними знакомились на уроках физики и природоведения. А речь пойдёт об атомах, молекулах, химических элементах и веществах. Эти понятия являются основой атомно-молекулярного учения.
Рассмотрим подробно каждое понятие.
Атом
Наверняка вы в учебнике или кабинете химии видели периодическую систему химических элементов (ПСХЭ). Она имеет разный вид и структуру, с которой вы позже подробно познакомитесь. Классический вид периодической системы химических элементов изображён на рисунке.
С уроков природоведения вам известно, что атомы это кирпичики мироздания.
Атом – мельчайшая частица химического элемента, которая отвечает за его свойства и химически неделима.
На данный момент известно 126 видов атомов – химических элементов. Какая связь между химическим элементом и атомом? Химический элемент состоит из атомов определённого вида. В чём состоит отличие этих понятий. Почему алхимики не могли найти философский камень?
Почему железо или медь не превращаются в золото? Чтобы ответить на эти вопросы, необходимо рассмотреть строение атома.
Абсолютно каждый атом имеет положительно заряженное ядро и, вращающиеся вокруг него, отрицательные электроны.
Самое тяжёлое в атоме – это ядро, которое состоит с протонов (имеют заряд +) и нейтронов (заряд 0).
Атом не имеет никакого заряда, иными словами нейтрален.
Число протонов = число электронов
Чтобы узнать количество частиц, необходимо определить порядковый номер элемента в ПСХЭ.
Например, если в состав атома входит 10 электронов и 10 протонов, посмотрев в периодическую систему, увидим, что данный набор частиц отвечает химическому элементу – Неон. Химический элемент Золото имеет 79 протонов и 79 электронов. Состав атомов, а точнее, количество протонов, не изменяется в ходе химических реакций. Именно по этой причине, алхимики не смогли найти рецепт философского камня.
Атомы (подобно буквам, которые соединяются в слоги, а потом в слова) соединяются в молекулы.
Молекула
Молекула – наименьшая частица вещества
Как образуются молекулы? Снова проведём аналогию с буквами. Чтобы получилось читаемое и со смыслом слово, необходима определённая комбинация букв и чёткие правила. Также происходит и при образовании молекулы. Атомы соединяются в молекулу с помощью химических связей.
Свойства молекул зависят от того, атомы каких элементов входят в их состав, а также каким образом они соединены между собой.
Рассмотрим на примере молекул веществ, которые образованные атомами кислорода, это кислород и озон. Обе эти молекулы образованы атомами химического элемента Кислород, но в состав озона, химическая формула которого О3, входит 3 атома Кислорода, а в молекулу кислорода, формула вещества О2 – два атома химического элемента Кислород.
Данное явление называется аллотропией. Это явление существования простых веществ, образованных одинаковым химическим элементом, но различным по свойствам и строению.
Рекордсменом по образованию аллотропных форм является углерод, который существует в виде алмаза, графита, карбина, фуллеренов, углеродных нанотрубок.
Как видно из определения, атомы и молекулы – это частицы, но в чём их разница? Снова проведём аналогию с буквами и словами. Буквы – это атомы, слова – это молекулы. Буквы не могут состоять из слов, так же как и атомы не могут состоять из молекул.
Молекула сернистого газа SO2 состоит из одного атома Серы и двух атомов Кислорода. Молекула аммиака состоит из одного атома Азота и трёх атомов Водорода и т. д.
Таким образом, мы видим, что все вещества состоят из атомов химических элементов. Живая и неживая природа – это также комбинация химических элементов.
Ионы
Что происходит с атомом, если он присоединяет или отдаёт электроны? Он становится заряженной частицей.
Ионы – частицы, которые положительно или отрицательно заряжены.
Обобщив все вышесказанное, выделим основные постулаты атомно-молекулярного учения, которое является фундаментом в химии, физике и естествознании:
- Вещества состоят из молекул;
- Атомы являются частью молекулы;
- Атомам и молекулам характерно самопроизвольное движение;
- Во время химических реакций происходит изменение состава молекулы и образуются новые вещества.
Вещество. Классификация веществ
От активности химических элементов зависит — будут они существовать в свободном виде или будут частью вещества.
Вещество – это совокупность атомов, атомных частиц или молекул, находящаяся в определённом агрегатном состоянии.
Вещества делятся: простые и сложные.
Определение достаточно несложное и легко запоминается.
Закономерно возникает вопрос: чем сложное вещество отличается от смеси простых и сложных веществ?
На рисунке обозначено:
А) молекулы простого вещества кислород О2;
Б) молекулы простого вещества водород Н2;
В) смесь простых веществ О2 и Н2;
Г) молекула сложного вещества вода Н2О;
Д) смесь молекул простого вещества водород Н2 и сложного вещества Н2О.
Смеси образуются в результате физического воздействия, например, смешивание железных опилок и воды, а сложные вещества – с помощью химического воздействия, например, ржавчина на железе, вызванная взаимодействием железа и воды.
В зависимости от того, какими частицами образованы вещества, их различают молекулярного и немолекулярного строения.
Источник: 100urokov.ru
Урок №6. Атомы и молекулы. Атомно – молекулярное учение. Вещества молекулярного и немолекулярного строения
Эта лекция будет посвящена следующим понятиям: «атом», «молекула», «вещества молекулярного и немолекулярного строения», «атомно-молекулярное учение».
Возникновение представлений об атомах и молекулах
Атомы и молекулы
Как Вы уже знаете из курса физики, весь материальный мир состоит из атомов. Всего на Земле и в космосе обнаружено 89 видов атомов, отличающихся друг от друга строением, а также размером и массой. Еще более 20 видов атомов получены искусственно — они неустойчивы и распадаются на другие атомы. Синтез новых веществ продолжается и в настоящее время.
Предположение о существовании атомов — мельчайших неделимых частиц материального мира — сформировалось еще в Древней Греции. Об этом свидетельствуют высказывания греческого философа Демокрит а ( V в. до н.э.) «Начала вселенной — атомы и пустота» «Атомы это всевозможные маленькие тела» Он высказал мысль о том, что все тела в природе состоят из мельчайших невидимых, непроницаемых, неделимых, вечно движущихся частиц – атомов. Слово “атом” в переводе означает “неделимый”. Позднее, в средние века, учение об атомах преследовалось религией, которая тормозила развитие науки в целом, и химии в частности.
Атомы определенного вида принято называть химическим элементом. Каждый химический элемент имеет название и символ- условное обозначение в виде одной или двух букв, взятых из его латинского названия.
В течении нескольких столетий средневековые ученые-алхимики пытаюсь с помощью химических превращений получить золото из доступных веществ. Проводя многочисленные опыты, они заложили основы химии- изучили важные вещества, разработали технику проведения различных операций, но получить золота им так и не удалось.
Современная наука установила, что превращения одних аров в другие в некоторых случаях возможны. Их изучает ядерная физика. С их помощью, например, удалось превратить ртуть в золото. Правда, такое золото во много раз дороже самородного.
Атомы 89 ХЭ, встречающихся природе, распределены в ней неравномерно. В космосе самый распространенный элемент — водород (93%), за ним следует гелий. В земной коре больше всего кислорода, кремния, железа и алюминия.
Число веществ, найденных в природе или полученных искуственно, во много раз превышает число известных элементов. Это объясняется тем, что атомы объединяются с образованием более сложных частиц — молекул. [1]
Учение о молекулах и атомах было разработано в середине 18 века великим русским ученым Михаилом Васильевичем Ломоносовым (1711 – 1765 гг.) Он утверждал, что тела в природе состоят из корпускл (молекул), в состав которых входят элементы (атомы). Многообразие веществ ученый прозорливо объяснял соединением разных атомов в молекулах и различным расположением атомов в них. Удивительно верной и смелой для того времени была мысль М. В. Ломоносова о том, что некоторые корпускулы (молекулы) могут состоять из одинаковых элементов (атомов). Учение об атомах получило дальнейшее развитие в трудах известного английского ученого Джона Дальтона (1766 – 1844 гг.).
Сейчас известно, что все вещества состоят из атомов, но не все- из молекул. В некоторых веществах атомы связаны друг с другом в бесконечные слои и каркасы. в таком случае можно выделить лишь отдельно повторяющийся фрагмент. Веществ немолекулярного строения достаточно много — металлы, алмаз, графит, кварц, слюда, полевой шпат, мрамор, поваренная соль.
МОЛЕКУЛЫ И АТОМЫ
Можно ли опытным путем доказать, что молекулы состоят из атомов?
То, что атомы действительно существуют, подтверждают многие химические реакции. Так, например, при пропускании постоянного тока через воду в одной из трубок прибора собирается газ, в котором тлеющая лучинка ярко вспыхивает. Это кислород. В другой трубке собирается вдвое больше газа, который от зажженной лучинки загорается — это водород.
Схема аппарата для разложения воды (аппарат Гофмана)
Объяснить это явление можно так: мельчайшая частица воды – молекула состоит из 2 атомов водорода и одного атома кислорода. При пропускании постоянного тока через воду ее молекулы распадаются и образуются химически неделимые частицы – атомы кислорода и водорода. Затем атомы соединяются по два, и из двух молекул воды образуется одна – двухатомная молекула кислорода и две водорода.
Некоторые представления об атомах и молекулах, высказанные М. В. Ломоносовым за полвека до Д. Дальтона, оказались более достоверными и научными. Например, английский ученый категорически отрицал возможность существования молекул, состоящих из одинаковых атомов. Его взгляды отрицательно сказались на развитие химии. Учение о молекулах и атомах окончательно было принято только в 1860 г. на Всемирном съезде химиков в Карлеруэ.
Итак, что такое молекулы и атомы?
Молекулы – мельчайшие частицы вещества, состав которых и химические свойства такие же, как у данного вещества.
Молекулы – предельный результат механического дробления вещества.
Атомы – это мельчайшие химически неделимые частицы, из которых состоят молекулы.
Молекулы, в отличие от атомов, являются химически делимыми частицами.
Молекулярные вещества
Молекулярные вещества — это вещества, мельчайшими структурными частицами которых являются молекулы
Молекулы — наименьшая частица молекулярного вещества, способная существовать самостоятельно и сохраняющая его химические свойства.
Молекулярные вещества имеют низкие температуры плавления и кипения и находятся в стандартных условиях в твердом, жидком или газообразном состоянии.
Немолекулярные вещества
— это вещества, мельчайшими структурными частицами которых являются атомы или ионы .
Веществ немолекулярного строения достаточно много — металлы, алмаз, графит, кварц, слюда, полевой шпат, мрамор, поваренная соль.
Ион — это атом или группа атомов, обладающих положительным или отрицательным зарядом. Например: Na + , Cl — .
Немолекулярные вещества находятся в стандартных условиях в твердом агрегатном состоянии и имеют высокие температуры плавления и кипения.
Например: Поваренная соль — твердое вещество, t пл =801°С; t кип =1465°С; Железо , как и другие металлы, состоит из атомов. Наименьший повторяющийся фрагмент ( структурная единица) этого вещества -атом. Следовательно формула железа — Fe
Атомно-молекулярное учение
Атомно-молекулярное учение развил и впервые применил в химии великий русский ученый Ломоносов. Сущность учения Ломоносова можно свести к следующим положениям.
1. Все вещества состоят из «корпускул» (так Ломоносов называл молекулы).
2. Молекулы состоят из «элементов» (так Ломоносов называл атомы).
3. Частицы — молекулы и атомы — находятся в непрерывном движении. Тепловое состояние тел есть результат движения их частиц.
4. Молекулы простых веществ состоят из одинаковых атомов, молекулы сложных веществ — из различных атомов.
Атомистическое учение в химии применил английский ученый Джон Дальтон. В своей основе учение Дальтона повторяет учение Ломоносова. Вместе с тем оно развивает его дальше, поскольку Дальтон впервые пытался установить атомные массы известных тогда элементов.
Однако Дальтон отрицал существование молекул у простых веществ, что по сравнению с учением Ломоносова является шагом назад. По Дальтону, простые вещества состоят только из атомов, и лишь сложные вещества — из «сложных атомов» (в современном понимании — молекул). Отрицание Дальтоном существования молекул простых веществ мешало дальнейшему развитию химии.
Атомно-молекулярное учение в химии окончательно утвердилось лишь в середине XIX в. Молекула — это наименьшая частица данного вещества, обладающая его химическими свойствами. Химические свойства молекулы определяются ее составом и химическим строением. Атом — наименьшая частица химического элемента, входящая в состав молекул простых и сложных веществ.
Химические свойства элемента определяются строением его атома. Отсюда следует определение атома, соответствующее современным представлениям: атом — это электронейтральная частица, состоящая из положительно заряженного атомного ядра и отрицательно заряженных электронов. Согласно современным представлениям из молекул состоят вещества в газообразном и парообразном состоянии. В твердом состоянии из молекул состоят лишь вещества, кристаллическая решетка которых имеет молекулярную структуру.
Основные положения атомно-молекулярного учения можно сформулировать так:
- Существуют вещества с молекулярным и немолекулярным строением.
- Между молекулами имеются промежутки, размеры которых зависят от агрегатного состояния вещества и температуры. Наибольшие расстояния имеются между молекулами газов. Этим объясняется их легкая сжимаемость. Труднее сжимаются жидкости, где промежутки между молекулами значительно меньше. В твердых веществах промежутки между молекулами еще меньше, поэтому они почти не сжимаются.
- Молекулы находятся в непрерывном движении. Скорость движения молекул зависит от температуры. С повышением температуры скорость движения молекул возрастает.
- Между молекулами существуют силы взаимного притяжения и отталкивания. В наибольшей степени эти силы выражены в твердых веществах, в наименьшей — в газах.
- Молекулы состоят из атомов, которые, как и молекулы, находятся в непрерывном движении.
- Атомы одного вида отличаются от атомов другого вида массой и свойствами.
- При физических явлениях молекулы сохраняются, при химических, как правило, разрушаются.
- У веществ с молекулярным строением в твердом состоянии в узлах кристаллических решето находятся молекулы. Связи между молекулами, расположенными в узлах кристаллической решетки, слабые и при нагревании разрываются. Поэтому вещества с молекулярным строением, как правило, имеют низкие температуры плавления.
- У веществ с немолекулярным строением в узлах кристаллических решеток находятся атомы или другие частицы. Между этими частицами существуют сильные химические связи, для разрушения которых требуется много энергии. Поэтому вещества с немолекулярным строением имеют высокие температуры плавления.
Объяснение физических и химических явлений с точки зрения атомно-молекулярного учения. Физические и химические явления получают объяснение с позиций атомно-молекулярного учения. Так, например, процесс диффузии объясняется способность молекул (атомов, частиц) одного вещества проникать между молекулами (атомами, частицами) другого вещества. Это происходит потому, что молекулы (атомы, частицы) находятся в непрерывном движении и между ними имеются промежутки. Сущность химических реакций заключается в разрушении химических связей между атомами одних веществ и в перегруппировке атомов с образованием других веществ.
II. Закрепление
Дайте ответы на следующие вопросы:
- ПРОСМОТРИТЕ ПРЕЗЕНТАЦИЮ: СТРОЕНИЕ АТОМОВ
- Назовите имя древнегреческого философа, который высказал мысль о том, что все тела в природе состоят из мельчайших невидимых, непроницаемых, неделимых, вечно движущихся частиц – атомов.
- Назовите имя великого русского учёного, основоположника учения о молекулах и атомах.
- Дайте определение молекуле.
- Дайте определение атому.
- Какие вещества относят к веществам молекулярного и немолекулярного строения. Приведите примеры веществ.
[1] В.В.Еремин,А.АДроздов,Н.ЕКузьменко,В.В.Лунин Химия 8 М. 2004
Источник: sites.google.com