Золото и платина не реагирует

Конечно, самый простой способ отличить золото от позолоты известен всем: пойти в ювелирный и попросить проверить. Однако по разным причинам это не всегда получается сделать: не каждый сотрудник ювелирного салона сможет вам помочь и не факт, что все это будет бесплатно.

Еще один способ быстро узнать, что именно попалось вам на копе — дешевая бижутерия или настоящая драгоценность, подразумевает использование азотной кислоты. Ее можно легко заказать по интернету, цена у этого реактива не слишком высока.

Алгоритм действий:

  1. Возьмите предположительно золотую вещицу, положите небольшую емкость из нержавейки.
  2. В пипетку наберите немного азотной кислоты.
  3. Нанесите каплю азотной кислоты на ваше «золото» и обратите внимание на результат реакции.

Результат может быть различен.

Если металл слегка позеленел, то либо это совсем не золото, либо украшение с позолотой, например, латунь с позолотой.

Если на поверхности металла появилась пленка молочного цвета — то вещь, скорее всего, серебряная, позолоченная.

Как разделить золото, палладий и платину в присутствии меди. Первый опыт

Никакой реакции — ваша находка реальное, настоящее золото.

Азотная кислота: получение и химические свойства

Строение молекулы и физические свойства

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:

Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:

Способы получения

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

Например , концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:

2. В промышленности азотную кислоту получают из аммиака . Процесс осуществляется постадийно.

1 стадия. Каталитическое окисление аммиака.

2 стадия. Окисление оксида азота (II) до оксида азота (IV) кислородом воздуха.

Читайте также:
Сусальное золото это сульфид

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

Химические свойства

Азотная кислота – это сильная кислота . За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства .

1. Азотная кислота практически полностью диссоциирует в водном растворе.

Как отличить платину от серебра двумя способами.

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Например , азотная кислота взаимодействует с оксидом меди (II):

Еще пример : азотная кислота реагирует с гидроксидом натрия:

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов).

Например , азотная кислота взаимодействует с карбонатом натрия:

4. Азотная кислота частично разлагается при кипении или под действием света:

5. Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

С алюминием, хромом и железом на холоду концентрированная HNO3 не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 : 3 (по объему):

HNO3 + 3HCl + Au → AuCl3 + NO + 2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

Таблица . Взаимодействие азотной кислоты с металлами.

Азотная кислота
Концентрированная Разбавленная
с Fe, Al, Cr с неактивными металлами и металлами средней активности (после Al) с щелочными и щелочноземельными металлами с неактивными металлами и металлами средней активности (после Al) с металлами до Al в ряду активности, Sn, Fe
пассивация при низкой Т образуется NO2 образуется N2O образуется NO образуется N2

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3 обычно восстанавливается до NO или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Читайте также:
Реагирует ли золото с водой при нагревании

Например , азотная кислота окисляет серу, фосфор, углерод, йод:

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором . Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

7. Концентрированная а зотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Например , азотная кислота окисляет оксид серы (IV):

Еще пример : азотная кислота окисляет иодоводород:

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты.

Например , сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

При нагревании до серной кислоты:

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция«).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Растворение золота в царской водке: очистка, пропорции раствора кислот, осаждение золота в домашних условиях и его переплавка в слитки

Царская водка – вода царей — Aqua Regia на латыни – смесь двух кислот, соединенных вместе. Азотная и соляная кислоты берутся в пропорции один к трем. Это баланс по массе, при пересчете на чистые вещества один к двум. Издает неприятный хлорный запах. Уникальная особенность состава – возможность растворять ряд драгоценных металлов – золота, платины и др.

Используется для очищения золота от примесей путем фильтрования и осаждения металла.

Царская водка: история названия, пропорция кислот и химические свойства

Свойства Aqua Regia была описаны еще до того момента, как была открыта соляная кислота в 14 веке. Состав получил широкое распространение и свое название в эпоху расцвета алхимии на Европейском континенте. Алхимик из Германии Альберт Великий (Кельнский), который был наставником Фомы Аквинского, назвал ее aqua secunda как производное от aqua prima, азотной кислоты.

В переводе с латыни «вторичная водка» и «первичная водка».

Представители алхимической когорты начали именовать ее царской тогда, когда кардинал Бонавентура, относимый католичеством к отцам церкви, установил, что вещество, которое объединило две кислоты способно растворять «царя металлов». Ранее этого момента считалось, что благородный металл не может быть ничем изменен. Взаимодействие царской водки и золота доказало обратное. В России М.В Ломоносов называл раствор «королевской водкой».

Символ Aqua Regia, принятый у алхимиков: ▽R. перевернутый треугольник — знак воды.

Химические продукты, соединяясь, взаимодействуют и образуют состав продуктов, который отличается высокой активностью. Это проявляется в сильном запахе с оттенками хлора и диоксида азота. Газообразная двуокись азота желтого цвета напоминает дым такого тона.

Сначала царская водка не имеет цвета, но постепенно приобретает желто-оранжевый оттенок, становясь очень сильным окислителем. Если ее хранить некоторое время, постепенно разлагается, выделяя газообразные вещества.

Скорость травления, то есть окисления, или уровня растворимости, золота — около 10 мкм/мин. Другие благородные металлы требуют для прохождения реакции нагрева до определенных температур. Это относится к родию и иридию. Иными свойствами отличается такой металл, как серебро. Растворение в Aqua Regia не наступает, на поверхности образуется слой AgCl, хлорида драгоценного металла.

Читайте также:
Методы извлечения золота из золотосодержащих песков

Источник: all-equa.ru

Почему канцерогенная серная кислота не вступает во взаимодействие с золотом и платиной?

Найдите правильный ответ на вопрос ✅ «Почему канцерогенная серная кислота не вступает во взаимодействие с золотом и платиной? . » по предмету Химия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.

Новые вопросы по химии
Придумайте необычные описания характеризующие воду.
Химия: Какие частицы входят в состав ядра атома? а). электроны б). протоны в). нейтроны г). ионы

По положению элемента #40 в табл Менделеева запишите электрон конфигур. Выделите ваоентные электронв и распредилите их по квантовым состоянием в стабильном и возбуж состояниях. Для валент электрон запишите квант числа.

CH3-CH2-CH2-Cl+KOH⇒?

Сожгли вещество, масса которого 13,8 грамм, при этом выделился оксид углерода (четырех валентный) объемом 23,52 литра, и вода массой 10,8 грамм. Плотность этого вещества по водороду 46. Установить молекулярную формулу

Главная » Химия » Почему канцерогенная серная кислота не вступает во взаимодействие с золотом и платиной?

Источник: iotvet.com

Платина – царица благородных металлов

Драгоценный металл: платина

Самый недооцененный из тройки всем известных благородных металлов – это платина. Ничего удивительного в этом нет: платиновый самородок черен и неказист, и всякий нашедший его – перешагнет и пойдет дальше.

В рудах платина и золото частенько сопутствуют друг другу. Однако золотодобытчики прошлого, выплавляя золото, попросту выбрасывали кусочки невзрачного металла. Вместе с золотом и серебром платина не плавилась; под молотом на наковальне становилась тверже; по виду слегка напоминала серебро – но грязное, негодное.

Словом, ненужная примесь шла в отходы. Да и было-то ее совсем немного! Настолько немного, что европейские литейщики благородных металлов даже о существовании платины как отдельного элемента Вселенной не догадывались вплоть до середины ΧVΙΙΙ века. В отличие от инков.

Читайте также:
Золото окислитель или восстановитель

Запутанная история драгоценного металла

О происхождении платины и металлов платиновой группы современным ученым известно из спектрографических наблюдений масштабных космических катастроф. Тяжелые металлы, в том числе серебро, золото, платина и платиноиды – палладий, рутений, осмий, иридий и родий, — появляются в межзвездном пространстве в результате реакций синтеза, сопровождающих взрывы сверхновых и столкновения массивных старых звезд.

Распыленная звездная субстанция конденсируется в пыль. Гравитационные флуктуации формируют более или менее массивные комки материи. Разными путями межзвездное вещество, некоторую часть которого составляют благородные металлы, попадает на поверхность планет. Где и рассеивается в толще коры.

Процессы эрозионного разрушения коренных пород планеты с переформированием осадочных и метаморфических наслоений позволяют тяжелым металлам сконцентрироваться в месторождения. Редкие и немногочисленные – если говорить о платине и металлах платиновой группы.

Платина и платиноиды на Земле

В земной коре платины немного. Всего-то 0,0000005% (пять десятимиллионных процента) от массы Земли. Что не мешает заинтересованным в платине промышленникам добывать по 200 тонн благородного металла ежегодно.

Разведанные запасы платины оцениваются в 80 тысяч тонн, причем основные месторождения располагаются на территории пяти государств. ЮАР и Зимбабве, Россия и Китай, США сосредотачивают примерно девять десятых мирового запаса платины. Канада, Южная Америка и прочие страны владеют мелкими месторождениями.

Впрочем, имеются оценки, позволяющие 90% сырой платины относить к южноафриканским копям. Что, конечно же, указывает не столько на исключительность южной Африки, сколько на недостаточность геологической разведки недр остальной части Земли.

Природные соединения платины

Чистая платина в природе встречается нечасто. Самородная платина – это, как правило, смесь нескольких металлов с преобладанием собственно платины. Наиболее типичные из соединений определяются как минералы.

В поликсене – от 80 до 88% платины и около 10% железа. Купроплатина, помимо благородного металла, содержит до 14% меди и примерно столько же железа. Хорошо известна никелистая платина (находящаяся в жильных залежах в смеси с железом, медью и никелем).

Платиновые самородки

Случается платине соединяться и с серой (минерал куперит), и с мышьяком (сперрилит), и с сурьмой. Однако гораздо чаще природная платина встречается в соединении с палладием или иридием. Остальные металлы платиновой группы присутствуют в рудах в незначительных, как правило, концентрациях.

Особо крупных самородков платины в природе не обнаружено. Не слишком впечатляющие внешне, в Алмазном фоне России хранятся платиновые самородки массой в 5918 г и 7860 г. Найдены они на рассыпных месторождениях Кондер (Хабаровский край) и Исовский прииск (Урал).

История освоения богатства

Встречавшаяся в россыпях издревле, платина не интересовала европейцев. Наиболее практично поступали народы северной Азии, использовавшие платиновую зернь в качестве дроби или картечи. Однако южноамериканские племена инка и чибча, добывавшие в Андах немало золота и серебра, к платине относились с большим пиететом. Не умея толком обработать тугоплавкий металл, они хранили платину как дар богов, и использовали ее в культовых ритуалах.

Читайте также:
Набрано максимальное количество золота wow

Испанцы, презрительно обозвавшие новый для себя металл «серебришком», сообразили как при помощи платины фальсифицировать золото. Очень выгодно взять по бросовой (вдвое дешевле серебра) цене платину, и добавить ее в золотой сплав. Примешанная к золоту в относительно небольших количествах, платина не меняет цвета сплава. Зато позволяет сэкономить дорогой материал!

Вот почему испанские власти платину приказали топить: частью прямо в Колумбии, частью уже в Испании. И топили, пока мадридский двор сам не решил подзаработать фальшивомонетчеством. Глядя на фокусы власть предержащих, естествоиспытатели заинтересовались новым металлом, и, проведя ряд исследовательских опытов, сначала в 1750-м, и повторно аж в 1803-му году выделили из разрозненных образцов чистую платину.

Понадобилось еще 30 лет, чтобы Джулиус Скалигер, химик из Италии, привел неопровержимые доказательства: платина – химический элемент, а не грязное золото или испорченное примесями серебро. Впрочем, у Скалигера были предшественники, утверждавшие то же самое за 80 лет до него – но наука тех лет большой спешностью не отличалась. Фактически признание к платине пришло лишь в ΧΙΧ веке.

Английский инженер Уильям Уолластон (открывший родий и палладий) предложил изготавливать из платины сосуды для производства концентрированных кислот. Предложение оказалось дельным, и спрос на металл возрос.

Россия, обладавшая на тот момент сравнительно богатыми месторождениями платины, через десять лет после начала добычи благородного металла стала чеканить из него монету. Практического применения драгоценному металлу в России долго не находилось, и все припасы (более 16-ти тонн очищенной платины) в 1867-м году были проданы Англии.

Как это случалось и раньше, и позже, и не с одними только российскими правителями, потенциала своей «синицы в руках» они просто не рассмотрели.

Физико-химические свойства платины

По внешнему виду платина напоминает серебро, однако темнее и тусклее него. Цвет платины характеризуется как серовато-белый, в соединениях чистота окраски снижается. Температура плавления высока: 1768,3°C. Твердость не превышает трех с половиной единиц по Моосу. Кристаллическая структура платины – кубическая.

В природе кристаллы платины встречаются в жильных месторождениях и самородках.

Платина химически устойчива, однако реагирует с горячей царской водкой. Растворяется в броме. При нагревании вступает в реакцию с немногочисленными металлами и неметаллами. Растворяет в себе молекулярный водород. Известна как активный катализатор процессов окисления и присоединения водорода.

В частности, губчатая платина способна спровоцировать возгорание смеси водорода и кислорода при низкой температуре газов. До изобретения спичек широко выпускались зажигалки, использующие этот принцип.

Платина, чистый металл

Применение платины

В современных условиях спрос на платину растет, а ее использование интенсифицируется. До середины прошлого века не менее половины добываемой платины потреблялось ювелирами, еще несколько процентов – зубопротезистами и медиками.

Источник: finesell.online

Рейтинг
Загрузка ...