Припои на основе золота обладают весьма ценными свойствами, характерными для этого металла: они жаро-и термостойки, по крайней мере до температуры 500 °С; имеют высокую коррозионную стойкость в атмосферных условиях и в контакте с многими агрессивными средами, пластичны (ГОСТ 6835—80).
Длительное время золотые припои предназначались главным образом для пайки ювелирных изделий и зубных протезов. Однако уже с 50-х годов их все чаще стали применять при вакуумной пайке изделий, работающих при повышенных температурах в условиях термоциклирования, а также при пайке сталей и других металлов с полупроводниковыми кристаллами.
Золото образует непрерывные ряды пластичных твердых растворов с никелем, серебром, палладием, медью. На диаграммах состояния Au—Ni и Аu—Сu имеет место минимум температуры плавления: наименьшая температура плавления твердых растворов меди, содержащих 18 % Аu,— 905 °С и 82,5 % Аu — 960 °С. Несколько менее интенсивно снижают температуру плавления золота железо и кобальт, образующие с ним диаграммы состояния перитектического типа; со стороны золота в системе Au—Fe образуется непрерывный ряд твердых растворов с наинизшей температурой плавления, со стороны золота в системе Аu—Со — эвтектика. ;
Температура плавления припоя. Что такое свинцовый припой
Хром, германий, кремний образуют с золотом простые эвтектические системы сплавов без химических соединений. Наиболее тугоплавкая из них — эвтектика Аu—Сг — содержит 8,4 % Gr и плавится при температуре 996 °С; легкоплавкие эвтектики золота с германием (tпл = 365 °С при 12 % Ge) и с кремнием (tпл = 370 °С при 6 % Si) пластичны и являются хорошей основой при разработке припоев с температурой пайки в интервале 350—500 °С. Припои на основе этих эвтектик склонны к химической эрозии некоторых металлов.
Бор, рутений, индий, сурьма, олово резко снижают температуру плавления золота, но образуют с ним химические соединения. Поэтому введение этих элементов в золотые припои ограничивается их предельной растворимостью в них. Предельная растворимость в двойных сплавах с золотом достигает 1,2 % Ge при 356 °С; 4,2 % Sn при 498 °С; 7,7 % In при 647 °С. Растворимость рутения в золоте ничтожно мала. Эти элементы нашли применение в качестве депрессантов и в некоторых случаях как упрочнители припоев, так как при их взаимодействии с золотом образуются мелкодисперсные включения твердых химических соединений.
Титан также образует с золотом химические соединения, но при этом температура плавления припоя при введении титана повышается.
Хром и никель повышают термостойкость и жаропрочность золотых припоев. Припои на основе золота, легированные этими компонентами, кроме того, окалиностойки, жаростойки и прочны; стабильны по составу при пайке в вакууме. Припой Аu — 18 % Ni нашел применение для пайки коррозионно-стойких сталей и образует с ними паяные соединения, обладающие особенно высокой прочностью (oв = 784 МПа), низкой упругостью испарения. Поэтому золотые припои, легированные этими элементами, с успехом используются при пайке изделий из сталей, работающих в условиях высокого нагружения и повышения температур (~500°С); например, турбин ракет и других узлов авиационной и космической техники США. Температура плавления таких припоев обычно несколько ниже 1000 °С.
ЗОЛОТО ИЗ РАСТВОРИТЕЛЯ ПРИПОЯ! ПРИПОЙ КОТОРЫЙ СКРЫВАЕТ ЗОЛОТО!
Припой № 1 (табл. 25) обладает жаростойкостью при температуре 500 °С, имеет высокую прочность и смачивающую способность. Припой № 2 образует герметичные паяные соединения с невысоким временным сопротивлением разрыву (ов = 137 МПа). Для сохранения пластичности паяных швов паяемое изделие необходимо быстро охлаждать от температуры 500 °С в связи с тем, что в этих сплавах ниже температуры 390 °С образуются упорядоченные твердые растворы, понижающие пластичность сплава. К положительным свойствам припоев Аu—Сu следует отнести весьма узкий интервал кристаллизации, что обеспечивает высокую размерную точность при монтаже тонкостенных конструкционных элементом изделий. Эти припои применяют при пайке металлов высокой чистоты, имеющих высокую коррозионную стойкость, а также для пайки электронных трубок, при изготовлении вакуумного оборудования и т. п.
Припой № 3 был применен фирмой «Грумман Диркрафт инжиниринг» (США) для пайки трубопроводов из стали 3041 в лунном модуле космического корабля «Аполлон» и для специальных конструкционных элементов реактора из инконеля 718. Припой обладает высокой прочностью и окалиностойкостью при высоких температурах. Температура пайки в вакууме 950 °С.
Припои № 4 и 5 предназначены для пайки изделий, работающих при повышенных температурах. Припои хорошо смачивают хромосодержащие теплостойкие сплавы на основе кобальта, обеспечивают хорошую пластичность паяных соединений и растекаются при температуре ниже 1036°С. Примеси в таких припоях строго ограничены: при содержании в припое более 0,5 % алюминия, титана или кремния резко ухудшается растекаемость припоев. Содержание в них Al+Ti+Si должно быть меньше 0,1 %, лучше 0,02 %.
По данным фирмы «Филькинсон Денталь Мануфактуринг» (США), припой № 6 обладает достаточно высокой прочностью, пластичностью и коррозионной стойкостью при нормальных и повышенных температурах. Он применяется при пайке металлов с керамикой типа AI2O3. Паяные швы не окисляются даже при сгорании керамики. Припой имеет хорошую электрическую проводимость.
Припой № 7 разработан для пайки коррозионно-стойкой стали с керамикой (А1203), образует вакуум-плотные и коррозионно-стойкие швы на воздухе и термостойкие соединения в условиях нагрева до 700 °С в течение 500 ч. Керамику перед пайкой металлизируют молибденом и паяют со сталью 321 (с толщиной листа 0,3 мм). Паяные соединения термостойки в течение 250 циклов нагрева (20—880 °С) при скорости нагрева и охлаждения 80 °С/мин.
Золотые припои с кремнием, германием, оловом, сурьмой и медью благодаря невысокой температуре их плавления получили применение при изготовлении полупроводниковых вакуумных приборов.
Для обеспечения высокой электрической проводимости (не менее 75 % электрической проводимости чистой меди) соединения контактов медных элементов протонных ускорителей с коррозионно-стойкими сталями паяют припоями 50 % Сu—50 % Аи или 35 % Аu—62 % Сu—3 % Ni в печи, в среде водорода или в вакууме (р=1,33-10 -5 Па) при температуре 1180°С.
Припои для ювелирных изделий должны обладать по сравнению с другими припоями еще двумя особенностями: проба и цвет их и паяемого сплава должны быть однаковыми. Снижение тем пературы плавления золотых припоев и подбор цвета достигаются легированием их медью, кадмием, цинком.
Для пайки платины рекомендованы золотые припои системы Au—Pd—Сu—Ag с добавками цинка, никеля и марганца, вводимыми для повышения их пластичности.
Припои с палладием
Припои с палладием, несмотря на их дороговизну и дефицитность, в последнее время интенсивно исследуют и рекламируют. Палладий в качестве основы припоев интересен во многих отношениях. Во-первых, он менее дефицитен, чем другие металлы платиновой группы; во-вторых, образует непрерывный ряд твердых растворов с металлами первой (серебро, медь, золото) и восьмой (железо, кобальт, никель) групп периодической системы, а со многими другими элементами образует относительно широкую область твердых растворов.
Краевой угол смачивания технического железа серебром довольно большой (70°). Угол смачивания железа серебром (после пайки при температуре 850—1100 °С с флюсом), по данным Д. В. Руза и В. А. Андерсена, снижается с 70 до 20 °С при добавке 5 % Pd. Припой ПСр 72 после добавки палладия пригоден для пайки коррозионно-стойких сталей в сухом аргоне без флюса. Добавка к припоям системы Ag—Сu—Pd 0,2—0,5 % Li способствует еще большему уменьшению краевого угла смачивания жидкого припоя на поверхности паяемого металла.
Способность палладия образовывать непрерывный ряд твердых растворов с металлами группы железа и ограниченные твердые растворы с металлами 5-й и 6-й групп периодической системы (Nb, Та, Mo, W), в противоположность металлам первой группы (Ag, Сu, Аu), позволяет палладиевым припоям конкурировать с никелевыми припоями при пайке жаропрочных сплавов и серебряно-медными припоями при пайке тугоплавких сплавов. В последнее время за рубежом наблюдается тенденция к замене известного эвтектического припоя, содержащего 72 % Ag и 28 % Си, а также припоев на его основе при пайке вакуумных приборов (в электронике, радиотехнике и т. д.) сплавами, содержащими палладий; упругость пара серебра при температуре его плавления 960 °С равна 0,344 Па, а пара палладия при температуре его плавления 1552 °С—1,37 Па.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Источник: metallicheckiy-portal.ru
Диаграмма состояния системы золото – олово (Au-Sn)
Исследование сплавов проведено методами термического, микроструктурного и рентгеновского анализов, измерением электропроводности. Максимальная растворимость Sn в А u составляет -6,8 % (ат.), растворимость А u в βSn -0,2 % (ат.), в αSn -0,006 % (ат.) [1]. В системе Au — Sn установлено образование пяти соединений: фаза β состава Au 10 Sn (80 % (ат.) Sn ) образуется по перитектоидной реакции и устойчива выше 250 °С (верхний предел устойчивости этой фазы не установлен); фаза С существует в интервале концентраций 11,07—16,3 % (ат.) Sn при температуре 275 °С и распадается по эвтектоидной реакции ζ ↔( Au ) + ζ’. Соединение AuSn (фаза δ) плавится конгруэнтно, область гомогенности 50—50,5 % (ат.) Sn ; соединение AuSn 2 (фаза ε) образуется по перитектической реакции в узкой области гомогенности; фаза η ( AuSn 4 ) кристаллизуется также по перитектической реакции (252 °С) и не стабильна при низких температурах . При температурах 278 и 217 °С и содержаниях 29,5 и 80 % (ат.) Sn . соответственно, протекают эвтектические реакции, а при температурах 309 и 252 °С — перитектические превращения, связанные с образованием фаз ε и η. Фаза β претерпевает эвтектоидный распад при температуре 250 °С и содержании 91 % (ат.) А u .
Эвтектоидный распад фазы ζ наблюдается при температуре ниже 100 °С и содержании 10 % (ат.) Sn и при температуре 190 °С и содержании 18,5 % (ат.) Sn .
- Диаграммы состояния двойных и многокомпонентных систем на основе железа. Банных О. А., Будберг П.Б., Алисова С. П. и др. Металлургия, 1986 г.
- Двойные и многокомпонентные системы на основе меди. под ред. Шухардина С.В. Наука, 1979 г.
- Диаграммы состояния двойных металлических систем ред. Лякишева Н.П.Машиностроение, 1996-2000 г.
Источник: markmet.ru
Плавка свинца и олова, температуры плавления металлов
Свинец — легкоплавкий металл, поэтому расплавить его довольно просто, даже не имея специального оборудования. Главное, что нужно знать — какова температура плавления свинца. От этого зависит выбор емкости, в которой будет происходить плавка. Для свинца подойдет обычная консервная банка, так как жесть для нее изготавливают из стали, которая плавится при температуре в несколько раз больше, чем у выплавляемого металла.
Свинец и его свойства
Грязно-серый цвет этого металла — результат того, что в атмосфере на его поверхности за короткое время образуется окисная пленка. Именно она придает такой невзрачный вид свинцу. Однако, если несколько раз провести напильником по поверхности металла, то под тонким слоем оксидной пленки станет видна блестящая поверхность с голубоватым оттенком. Это очень мягкий и тяжелый материал, он почти в полтора раза тяжелее стали. Плотность свинца — 11,34 г/куб.см, а плотность железа — 7,80 г/куб.см.
Свинец был открыт в древности примерно 4000 — 4500 лет до нашей эры. В современной промышленности его получение происходит в основном металлургическим способом из свинцовых руд и концентратов.
У свинца низкая температура плавления — всего 327 °C, а температура кипения — 1749 °C. Следует учитывать токсичность свинцовых паров и то, что этот химический элемент плохо выводится из организма. Чем больше нагревается расплавленный свинец, тем больше он испаряется. Поэтому помещение, в котором происходит плавка, должно хорошо проветриваться.
Именно благодаря невысокой температуре плавления свинец используют при изготовлении мягких припоев вместе с оловом.
Характеристика олова
Плавится при 232 °C, кипит при 2600 °C, отлично сплавляется с разными металлами, благодаря высокой пластичности хорошо поддается ковке. Паяльное олово используется в качестве припоя, так как оно хорошо смачивает металлы. Промышленное получение олова значительно сложнее чем свинца, поэтому оно гораздо дороже.
В отличие от свинца олово выглядит гораздо привлекательнее. Этот серебристо-белый металл безопасен для здоровья человека. Оловом часто покрывают поверхности металлических изделий в местах, где они контактируют с пищей: посуду, консервную жесть, пищевую фольгу и другие. Однако оловянная пыль и пары при вдыхании могут вызвать опасное влияние на человеческий организм.
Кроме производства тары для продуктов питания, олово широко используется в разных припоях и других сплавах, например, в антифрикционных и подшипниковых. Этот материал значительно легче свинца, его плотность 7,3 г/куб.см.
Олово полиморфно, то есть оно может существовать в различных модификациях в зависимости от температуры. При температуре ниже 13 °C белое олово (β-модификация) переходит в серое олово (α-модификацию). В результате этого фазового перехода блестящие оловянные изделия рассыпаются в порошок серого цвета. Причем при контакте с порошком белое олово как бы заражается от него и превращается в серое. Такое явление получило название «оловянная чума».
По некоторым данным, именно оно стало главной причиной гибели экспедиции Роберта Скотта на Южный полюс. Керосин, хранившийся на промежуточных складах, вытек из канистр, пропаянных по швам оловом, которое рассыпалось в порошок на морозах Антарктики. Таким образом, члены экспедиции остались почти без топлива.
Припои для пайки
Припои классифицируют по разнообразным характеристикам: степени плавления при пайке, способу изготовления, основному металлу, способности к флюсованию и др. По температуре расплавления припои бывают:
- Легкосплавные, плавятся при менее 145 °C.
- Мягкие, плавятся при температуре от 145 °C до 400 °C.
- Твердые, температура плавления выше 400 °C.
Легкосплавные применяют для пайки материалов критичных к перегреву, можно назвать такие марки, как сплав Ньютона, сплав Гутри, сплав Вуда, ПОСВ 32−15−53.
Мягкие применяют для лужения и пайки швов посуды, электроаппаратуры, печатных плат, трубок теплообменников. Самые распространенные из них это оловянно-свинцовые (см. табл.1).
Твердые припои дают высокую прочность соединения и применяются для пайки несущих конструкций. К этим припоям относятся медно-цинковые (ПМЦ-36, ПМЦ-48, ПМЦ-54), серебряные (ПСр72, ПСр70, ПСр50, ПСр50Кд, ПСр12М) и другие.
Оловянно-свинцовые припои
В зависимости от процентного соотношения олова и свинца изменяется температура плавления разных марок припоя.
Температуры плавления припоев (в °С). Таблица 1
ПОС10 | 268 | 31 | 299 |
ПОС30 | 183 | 73 | 256 |
ПОС40 | 183 | 52 | 235 |
ПОС50 | 183 | 26 | 209 |
ПОС90 | 183 | 39 | 222 |
ПОССу 30−0,5 | 183 | 72 | 255 |
ПОССу 40−0,5 | 183 | 52 | 235 |
ПОССу 10−2 | 268 | 17 | 285 |
ПОССу 30−2 | 185 | 65 | 250 |
ПОССу 40−2 | 185 | 44 | 229 |
Плавление металлов
Плавление — это процесс перехода вещества из твердого состояния в жидкое. В отличие от сплавов, у чистых металлов плавление и затвердевание (кристаллизация) происходит при неизменной строго определенной температуре. По ней различают металлы:
- легкоплавкие, плавятся при температурах до 600 °C;
- среднеплавкие — от 600 °C до 1600 °C;
- тугоплавкие — свыше 1600 °C.
В таблице 2 указано, при какой температуре плавится свинец, при какой температуре плавится олово и другие металлы.
Температуры плавления металлов (в °С). Таблица 2
Ртуть | -39 |
Калий | 64 |
Олово | 232 |
Свинец | 327 |
Алюминий | 660 |
Золото | 1064 |
Железо | 1539 |
Платина | 1772 |
Иридий | 2447 |
Вольфрам | 3420 |
Источник: chebo.pro